Daley CA, Abbott A, Doyle PS, Nader GA, Larson S. A review of fatty acid profiles and antioxidant content in grass-feed and grain-fed beef. Nutr J. 2010;9:1–12.
Article
Google Scholar
Brugiapaglia A, Lussiana C, Destefanis G. Fatty acid profile and cholesterol content of beef at retail of Piemontese, Limousin and Friesian breeds. Meat Sci. 2014;96:568–73.
Article
CAS
PubMed
Google Scholar
Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI, Whittington FM. Fat deposition, fatty acid composition and meat quality: a review. Meat Sci. 2008;78:343–58.
Article
CAS
PubMed
Google Scholar
French P, O' Riordan EG, Monahan FJ. Meat quality of steers finished on autumn grass, grass silage or concentrate-based diets. Meat Sci. 2000;56:173–80.
Article
CAS
PubMed
Google Scholar
Cook ME, Whigham LD, Yang M, et al. CLA inhibits the induction of prostaglandin and leukotriene synthesis. A natural substitute for non-steroidal anti-inflammatory drugs. In: International Conference on CLA. Alesund: Natural ASA; 2001. p. 6–7.
Google Scholar
Varela A, Oliete B, Moreno T, Portela C, Monserrrat L, Carballo JA, Sánchez L. Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Gallega breed. Meat Sci. 2004;67:515–22.
Article
CAS
PubMed
Google Scholar
Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution. Prog Lipid Res. 2011;50 Suppl 1:35–51.
Article
CAS
PubMed
Google Scholar
Lawrence GD. Dietary fats and health: dietary recommendations in the context of scientific evidence. Adv Nutr. 2013;4:294–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huerta-Leidenz NO, Cross HR, Savell JW, Lunt DK, Baker JF, Pelton LS, Smith B. Comparison of the fatty acid composition of subcutaneous adipose tissue from mature Brahman and Hereford cows. J Anim Sci. 1993;71:625–30.
CAS
PubMed
Google Scholar
Huerta-Leidenz NO, Cross HR, Saveli JW, Lunt DK, Baker LS, Smith B. Fatty acid composition of subcutaneous adipose tissue from male calves at different stages of growth. J Anim Sci. 1996;74:1256–64.
Article
CAS
PubMed
Google Scholar
Perry D, Nicholls PJ, Thompson JM. The effect of sire breed on the melting point and fatty acid composition of subcutaneous fat in steers. J Anim Sci. 1998;76:87–952.
Article
CAS
PubMed
Google Scholar
Menezes LFG, Restle J, Brondani IL, Kozloski GV, Deschamps F, Sachet RH. Perfil de ácidos graxos na carne de novilhos Charolês e Nelore puros e de gerações avançadas do cruzamento rotativo, terminados em confinamento. Cienc Rural. 2009;39:2478–84.
Article
Google Scholar
Rossato LV, Bressan MC, Rodrigues EC, Gama LT, Bessa RJB, Alves SPA. Parâmetros físico-químicos e perfil de ácidos graxos da carne de bovinos Angus e Nelore terminados em pastagem. Revista Brasileiro Zootecnia. 2010;39:1127–34.
Article
Google Scholar
Bressan MC, Rossato LV, Rodrigues EC, Alves SP, Bessa RJ, Ramos EM, Gama LT. Genotype × environment interactions for fatty acid profiles in Bos indicus and Bos taurus finished on pasture or grain. J Anim Sci. 2011;89:221–32.
Article
CAS
PubMed
Google Scholar
Taniguchi M, Guan LL, Zhang B, Dodson MV, Okine E, Moore SS. Gene expression patterns of bovine perimuscular preadipocytes during adipogenesis. Biochem Biophys Res Commun. 2008;366:346–51.
Article
CAS
PubMed
Google Scholar
Mannen H. Identification and utilization of genes associated with beef qualities. Anim Sci J. 2011;82:1–7.
Article
CAS
PubMed
Google Scholar
Bauchart D. Lipid absorption and transport in ruminants. J Dairy Sci. 1993;76:3864–81.
Article
CAS
PubMed
Google Scholar
Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: a review. J Dairy Sci. 1993;76:3897–931.
Article
CAS
PubMed
Google Scholar
Jenkins TC. Lipid metabolism in the rumen, review. J Dairy Sci. 1993;76:3851–63.
Article
CAS
PubMed
Google Scholar
Laliotis GP, Bizelis I, Rogdakis E. Comparative approach of the de novo fatty acid synthesis (Lipogenesis) between ruminant and non ruminant mammalian species: from biochemical level to the main regulatory lipogenic genes. Curr Genomics. 2010;11 Suppl 3:168–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ekine-Dzivenu C, Chen L, Vinsky M, Aldai N, Dugan MER, Mcallister TA, Wang Z, Okine E, Li C. Estimates of genetic parameters for fatty acids in brisket adipose tissue of Canadian commercial crossbred beef steers. Meat Sci. 2014;96:1517–26.
Article
CAS
PubMed
Google Scholar
Ramayo-Caldas Y, Mercadé A, Castelló A, Yang B, Rodríguez C, Alves E, Días I, Ibáñez-Escriche N, Noguera JL, Pérez-Enciso M, Fernández AL, Folch JM. Genome-wide association study for intramuscular fatty acid composition in an Iberian x Landrace cross. J Anim Sci. 2012;90:1–11.
Article
Google Scholar
Costa P, Lemos JP, Lopes PA, Alfaia CM, Costa AS, Bessa RJ, Prates JA. Effect of low- and high-forage diets on meat quality and fatty acid composition of Alentejana and Barrosã beef breeds. Animal. 2012;7:1187–97.
Article
Google Scholar
Buchanan JW, Garmyn AJ, Hilton GG, Vanoverbeke DL, Beitz QDDC, Mateescu RG. Comparison of gene expression and fatty acid profiles in concentrate and forage finished beef. J Anim Sci. 2013;91:1–9.
Article
CAS
PubMed
Google Scholar
Ferraz JBS, De Felício P. Production systems - an example from Brazil. Meat Sci. 2010;84:238–43.
Article
PubMed
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;3:911–7.
Article
Google Scholar
Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of lipids from animal tissues. J Biol Chem. 1957;226:497–509.
CAS
PubMed
Google Scholar
Kramer JKG, Fellner V, Dugan MER, Sauer FD, Mossoba MM, Yurawecz MP. Evaluating acid and base catalysts in the methylation of milk and rumen and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids. 1997;32:1219–28. 1997.
Article
CAS
PubMed
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7 Suppl 3:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goff SA, Vaughn M, Mckay S, Lyons E, et al. The iPlant collaborative: cyberinfrastructure for plant biology. Front Plant Sci. 2011. doi:10.3389/fpls.2011.00034.
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics resources. Nat Protoc. 2009;4 Suppl 1:44–57.
CAS
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37 Suppl 1:1–13.
Article
Google Scholar
Hardie DG. Organismal carbohydrate and lipid homeostasis. Cold Spring Harb Perspect Biol. 2012. doi:10.1101/cshperspect.a006031.
PubMed
PubMed Central
Google Scholar
Prado JM, Prado IN, Visentainer JV, et al. The effect of breed on the chemical composition and fatty acid profile of the Longissimus dorsi muscle of Brazilian beef cattle. J Anim Feed Sci. 2009;18:231–40.
Cesar ASM, Regitano LCA, Mouão GB, Tullio RR, Lanna DPD, et al. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. 2014;15:39.
Article
PubMed
PubMed Central
Google Scholar
Vernon RG, Flint DJ. Proc Nutr Soc. 1983;42:315–31.
Article
CAS
PubMed
Google Scholar
Vernon RG, Flint DJ. Proc Nutr Soc. 1988;41:287–93.
Article
Google Scholar
Polizel Neto A, Branco RH, Bonilha SFM, Gomes HFB, Corvino TLS. Papel dos Ácidos Graxos Voláteis na Deposição de Tecido Adiposo Intramuscular – Revisão. 2008. http://www.infobibos.com/Artigos/2008_3/AcidosGraxos/index.htm. Accessed 17 Dec 2014.
Ito RH, Prado IN, Rotta PP, Oliveira MG, Prado RM, Moletta JL. Carcass characteristics, chemical composition and fatty acids profile of longissimus muscle of young bulls from four genetic groups finished in feedlot. Revista Brasileira de Zootecnia. 2012;41:384–91.
Article
Google Scholar
Xie YR, Busboom JR, Gaskins CT, Johnson KA, Reeves JJ, Wright RW, Cronrath JD. Effects of breed and sire on carcass characteristics and fatty acid profiles of crossbred Wagyu and Angus steers. Meat Sci. 1996;43:167–77.
Article
CAS
PubMed
Google Scholar
Warren HE, Scollan ND, Enser M, Hughes SI, Richardson RI, Wood JD. Effects of breed and a concentrate or grass silage diet on beef quality in cattle of 3 ages. I: Animal performance, carcass quality and muscle fatty acid composition. Meat Sci. 2008;78:256–69.
Article
CAS
PubMed
Google Scholar
Jeong J, Kwon EG, Im SK, Seo KS, Baik M. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J Anim Sci. 2012;90:2044–53.
Article
CAS
PubMed
Google Scholar
Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009;297:271–88.
Article
Google Scholar
Vernon RG, Finley E, Taylor E, Flint DJ. Insulin binding and action of bovine adipocytes. Endocrinology. 1985;116:1195–9.
Article
CAS
PubMed
Google Scholar
Miller JR, Thomsen PD, Dixon SC, Tucker EM, Konfortov BA, Harbitz I. Synteny mapping of the bovine IGHG2, CRC and IGF-1 genes. Anim Genet. 1991;23:51–8.
Article
Google Scholar
Rhoades RD, Sawyer JE, Chung KY, Schell ML, Lunt DK, Smith SB. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers. J Anim Sci. 2007;85:1719–26.
Article
CAS
PubMed
Google Scholar
Rhoades RD, Sawyer JE, Ponce CH, Lunt DK, Smith SB. Substrate utilization and dose response to insulin by subcutaneous adipose tissue of Angus steers fed corn- or hay-based diets. J Anim Sci. 2009. doi:10.2527/jas.2008-1365.
PubMed
Google Scholar
De Smet S, Raes K, Demeyer D. Meat fatty acid composition as affected by fatness and genetic factors: a review. Animal Research. 2004;53:81–98.
Article
Google Scholar
Muers M. Sequencing for disease architecture. Nat Rev Genet. 2013;14:518.
Article
CAS
PubMed
Google Scholar
Chen ZJ, Zhao H, He L, Shi Y, Qin Y, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome. Nat Genet. 2011;43 Suppl 1:55–9.
Article
PubMed
Google Scholar
Tizioto PC, Coutinho LL, Decker JE, Schnabel RD, Rosa KO, et al. Global liver gene expression differences in Nelore steers with divergent residual feed intake phenotypes. BMC Genomics. 2015. doi:10.1186/s12864-015-1464-x.
Google Scholar
Lemos MVA, Chiaia HLJ, Berton MP, Feitosa FLB, Aboujaoude C, et al. Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics. 2016;17:213.
Article
PubMed
PubMed Central
Google Scholar
Calder PC. Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol. 2011. doi:10.1016/j.ejphar.2011.05.085.
PubMed
Google Scholar
Cui HX, Liu RR, Zhao GP, Zheng MQ, Chen JL, et al. Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens. BMC Genomics. 2012. doi:10.1186/1471-2164-13-213.
Google Scholar
Jiang S, Wei H, Song T, Yang Y, Peng J, Jiang S. Transcriptome comparison between porcine subcutaneous and intramuscular stromal vascular cells during adipogenic differentiation. PLoS One. 2013. doi:10.1371/journal.pone.0077094.
Google Scholar
Cesar ASM, Regitano LC, Koltes JE, Fritz-Waters ER, Lanna DP, Gasparin G, et al. Putative regulatory factors associated with intramuscular fat content. PLoS One. 2015. doi:10.1371/journal.pone.0128350.
Google Scholar
Lee H-J, Mi J, Kim H, Kwark M, et al. Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the depot-specific adipogenesis in cattle. PLoS One. 2013. doi:10.1371/journal.pone.0066267 DOI:10.1371%2Fjournal.pone.0066267#pmc_ext.
Lee HJ, Park HS, Kim W, Yoon D, Seo S. Comparison of metabolic network between muscle and intramuscular adipose tissues in Hanwoo beef cattle using a systems biology approach. Int J Genomics. 2014. doi:10.1155/2014/679437.
Google Scholar
Cánovas A, Varona L, Burgos C, Galve A, Carrodeguas JA, Ibáñez-Escriche N, Martín-Burriel I, López-Buesa P. Early postmortem gene expression and its relationship to composition and quality traits in pig Longissimus dorsi muscle. J Anim Sci. 2012. doi:10.2527/jas.2011-4799.
PubMed
Google Scholar
Mehla K, Magotra A, Choudhary J, Singh AK, et al. Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle. Gene. 2014;533:500–7.
Article
CAS
PubMed
Google Scholar
Berger J, Moller De. The mechanisms of action of PPARs. Annu Rev Med. 2002;53:409–35.
Article
CAS
PubMed
Google Scholar
Hihi AK, Michalik L, Wahli W. PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci. 2002;59 Suppl 5:790–8.
Article
CAS
PubMed
Google Scholar
Abbott BD. Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol. 2009;27:246–57.
Article
CAS
PubMed
Google Scholar
Ehrenborg E, Krook A. Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor delta. Pharmacol Rev. 2009;61:373–93.
Article
CAS
PubMed
Google Scholar
Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405:421–4.
Article
CAS
PubMed
Google Scholar
Kersten S. Peroxisome proliferator activated receptors and lipoprotein metabolism. PPAR Res. 2008;132960:2008. doi:10.1155/2008/132960.
Google Scholar
Doran AG, Berry DP, Creevey CJ. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle. BMC Genomics. 2014. doi:10.1186/1471-2164-15-837.2014.
PubMed
PubMed Central
Google Scholar
He K, Wang Q, Wang Z, Pan Y. Association study between gene polymorphisms in PPAR signaling pathway and porcine meat quality traits. Mamm Genome. 2013;24:322–31.
Article
CAS
PubMed
Google Scholar
MAPA – Ministério da Agricultura, Pecuária e Abastecimento (2000). Instrução Normativa no3, de 17 de Janeiro de 2000 http://www.agricultura.gov.br/arq_editor/file/Ministerio/concursos/em_andamento/instrucoes%20normativas/INT%20003%2017%2001%202000%20ABATE%20HUMANIT%25C1RIO%20ANIMAIS%20DE%20ACOUGUE.doc.
Kyoto Encyclopedia of Genes and Genomes. 2015. http://david.abcc.ncifcrf.gov/kegg.jsp?path=bta00650$Butanoate%20metabolism&termId=470015001&source=kegg. Accessed 13 Apr 2015.
Kyoto Encyclopedia of Genes and Genomes. 2015. http://david.abcc.ncifcrf.gov/kegg.jsp?path=bta00620$Pyruvate%20metabolism&termId=470014998&source=kegg. Accessed 13 Apr 2015.
Kyoto Encyclopedia of Genes and Genomes. 2015 http://david.abcc.ncifcrf.gov/kegg.jsp?path=bta00561$Glycerolipid%20metabolism&termId=470014986&source=kegg. Accessed 13 Apr 2015.
Kyoto Encyclopedia of Genes and Genomes. 2015. http://david.abcc.ncifcrf.gov/kegg.jsp?path=bta00072$Synthesis%20and%20degradation%20of%20ketone%20bodies&termId=470014947&source=kegg. Accessed 13 Apr 2015.