Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, et al. A mutant gibberellin-synthesis gene in rice. Nature. 2002;416:701–2.
Article
CAS
PubMed
Google Scholar
Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci U S A. 2002;99(13):9043–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedden P. The genes of the Green Revolution. Trends Genet. 2003;19(1):5–9.
Article
CAS
PubMed
Google Scholar
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, et al. “Green Revolution” genes encode mutant gibberellin response modulators. Nature. 1999;400:256–61.
Article
CAS
PubMed
Google Scholar
Milach SCK, Federizzi LC. Dwarfing genes in plant improvement. Adv Agron. 2001;73:35–65.
Article
CAS
Google Scholar
Jia Q, Zhang J, Westcott S, Zhang X, Bellgard M, Lance R, et al. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. Funct Integr Genomics. 2009;9:255–62.
Article
CAS
PubMed
Google Scholar
Jia Q, Zhang XQ, Westcott S, Broughton S, Cakir M, Yang J, et al. Expression level of a gibberellins 20-oxidase gene is associated with multiple agronomic and quality traits in barley. Theor Appl Genet. 2011;122:1451–60.
Article
CAS
PubMed
Google Scholar
Jia Q, Li C, Shang Y, Zhu J, Hua W, Wang J, et al. Molecular characterization and functional analysis of barley semi-dwarf mutant Riso no. 9265. BMC Genomics. 2015;16:927.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJ, Koornneef M, et al. Arabidopsis semidwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in rice and barley. Proc Natl Acad Sci U S A. 2013;110(39):15818–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mickelson HR, Rasmusson DC. Genes for short stature in barley. Crop Sci. 1994;34:1180–3.
Article
Google Scholar
Fettell NA, Moody DB, Long N, Flood RG. Determinants of grain size in malting barley. In: Proceedings of the 10th Australian Barley Technical Symposium, 16–20 September 2001, Canberra, ACT, Australia. 2001.
Google Scholar
Ivandic V, Malyshev S, Korzum V, Gramer A, Börner A. Comparative mapping of a gibberellic acid-insensitive dwarfing gene (Dwf2) on chromosome 4HS in barley. Theor Appl Genet. 1999;98:728–31.
Article
CAS
Google Scholar
Hellewell KB, Rasmusson DC, Gallo-Meagher M. Enhancing yield of semi dwarf barley. Crop Sci. 2000;40:352–8.
Article
Google Scholar
Zhang J. Inheritance of agronomic traits from the Chinese barley dwarfing gene donors ‘XiaoshanLixiahuang’ and ‘CangzhouLuodamai’. Plant Breed. 2000;119:523–4.
Article
Google Scholar
Chono M, Honda I, Zeniya H, Yoneyama K, Saisho D, Takeda K, et al. A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor. Plant Physiol. 2003;133:1209–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saisho D, Tanno K, Chono M, Honda I, Kitano H, Takeda K. Spontaneous brassinolide-insensitive barley mutants ‘uzu’ adapted to east Asia. Breeding Sci. 2004;54:409–16.
Article
CAS
Google Scholar
Zhang J, Zhen L, Zhang CH. Analysis on the dwarfing genes in Zhepi 1 and Aizao 3: two dwarfing gene donors in barley breeding in China. Agri Sci China. 2006;5:643–7.
Article
CAS
Google Scholar
Thomas WTB, Powell W, Swanston JS. The effects of major genes on quantitatively varying characters in barley. 4. The GPert and denso loci and quality characters. Heredity. 1991;66:381–9.
Article
Google Scholar
Ellis RP, Forster BP, Gordon DC, Handley LL, Keith RP, Lawrence P. Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J Exp Bot. 2002;53:1163–76.
Article
CAS
PubMed
Google Scholar
Wan Y, Lemaux PG. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 1994;104:37–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, et al. Agrobacterium tumefaciens mediated barley transformation. Plant J. 1997;11:1369–76.
Article
CAS
Google Scholar
Forster BP, Pakniyat H, Macaylay M, Matheson W, Phillips MS, Thomas WTB, et al. Variation in the leaf sodium content of the Hordeum vulgare cultivar Maythorpe and its derived mutant cv. Golden Promise. Heredity. 1994;73:249–53.
Article
CAS
Google Scholar
Forster BP. Mutation genetics of salt tolerance in barley: An assessment of Golden Promise and other semi-dwarf mutants. Euphytica. 2001;120:317–28.
Article
CAS
Google Scholar
Walia H, Wilson C, Condamine P, Ismail AM, Xu J, Cui X, et al. Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise. BMC Genomics. 2007;8:87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thomas WTB, Powell W, Wood W. The chromosomal location of the dwarfing gene present in the spring barley variety Golden Promise. Heredity. 1984;53(1):177–83.
Article
Google Scholar
Liu H, Bayer M, Druka A, Russel JR, Hackett CA, Poland J, et al. An evaluation of genotyping by sequencing (GBS) to map the Breviatistatum-e (ari-e) locus in cultivated barley. BMC Genomics. 2014;15:104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, et al. The barley mlo gene: a novel control element of plant pathogen resistance. Cell. 1997;88:695–705.
Article
CAS
PubMed
Google Scholar
Shirasu K, Lahaye T, Tan MW, Zhou FS, Azevedo C, Schulze-Lefert P. A novel class of eukaryotic zinc-binding proteins is required for disease resistance signaling in barley and development in C. elegans. Cell. 1999;99:355–66.
Article
CAS
PubMed
Google Scholar
Zhou FS, Kurth KC, Wei FS, Elliot C, Vale G, Yahiaoui N, et al. Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signalling pathway. Plant Cell. 2001;13:337–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, et al. SNARE-protein-mediated disease resistanceat the plant cell wall. Nature. 2003;425:973–7.
Article
CAS
PubMed
Google Scholar
Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F, Chen J, et al. The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci U S A. 2002;99(14):9328–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, et al. The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding-site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci U S A. 2008;105(39):14970–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein N, Perovic D, Kumlehn J, Pellio B, Stracke S, Streng S, et al. The eukaryotic translation initiation factor 4E confers multiallelic recessive Bymovirus resistance in Hordeum vulgare (L.). Plant J. 2005;42(6):912–22.
Article
CAS
PubMed
Google Scholar
Bulgarelli D, Biselli C, Collins NC, Consonni G, Stanca AM, Schulze-Lefert P, et al. The CC-NB-LRR-type Rdg2a resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PloS One. 2010;5(9):e12599.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science. 2005;310(5750):1031–4.
Article
CAS
PubMed
Google Scholar
Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A. 2006;103(51):19581–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A. 2007;104(4):1424–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch ST, et al. Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science. 2007;318:14469.
Article
CAS
Google Scholar
Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc Natl Acad Sci U S A. 2008;105(10):4062–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, et al. Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci U S A. 2010;107(50):21611–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nair SK, Wang N, Turuspekov Y, Pourkheirandish M, Sinsuwongwat S, Chen G, et al. Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage. Proc Natl Acad Sci U S A. 2010;107:490–5.
Article
CAS
PubMed
Google Scholar
You T, Yamashita Y, Kanamori H, Matsumoto T, Lundqvist U, Sato K, et al. A SHORTINTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. J Exp Bot. 2012;63:5223–32.
Article
CAS
Google Scholar
Mascher M, Jost M, Kuon JE, Himmelbach A, Aßfalg A, Beier S, et al. Mapping-by-sequencing accelerates forward genetics in barley. Genome Biol. 2014;15(6):R78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin D, Dong J, Xu F, Guo G, Ge S, Xu Q, et al. Characterization and fine mapping of a novel barley Stage Green-Revertible Albino Gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing. BMC Genomics. 2015;16:838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tavakol E, Okagaki R, Verderio G, Shariati JV, Hussien A, Bilgic H, et al. The barley Uniculme4 gene encodes a BLADE-ON-PETIOLE-like protein that controls tillering and leaf patterning. Plant Physiol. 2015;168(1):164–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saintenac C, Jiang D, Wang S, Akhunov E. Sequence-based mapping of polyploidy wheat genome. G3. 2013;3:1105–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen W, Yao J, Chu L, Yuan Z, Li H, Zhang Y. Genetic mapping of the nulliplex-branch gene (gb_nb1) in cotton using next-generation sequencing. Theor Appl Genet. 2015;128(3):539–47.
Article
CAS
PubMed
Google Scholar
Zhou G, Zhang Q, Tan C, Zhang X, Li CD. Development of the genome-wide InDel markers and their integration with SSR, DArT and SNP markers in single barley map. BMC Genomics. 2015;16:804.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, et al. SLAF-seq: an efficient method of large-scale De Novo SNP discovery and genotyping using high-throughput sequencing. PloS One. 2013;8(3):e5870.
Google Scholar
Xia C, Chen L, Rong T, Li R, Xiang Y, Wang P, et al. Identification of a new maize inflorescence meristem mutant and association analysis using SLAF-seq method. Euphytica. 2015;202(1):35–44.
Article
Google Scholar
Li B, Tian L, Zhang J, Huang L, Han F, Yan S, et al. Construction of a high-density genetic map based on large-scale markers developed by specific length amplified fragment sequencing (SLAF-seq) and its application to QTL analysis for isoflavone content in Glycine max. BMC Genomics. 2014;15(1):1086.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, et al. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics. 2014;15(1):1158.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu F, Sun X, Chen Y, Huang Y, Tong C, Bao J. Rapid identification of major QTLs associated with rice grain weight and their utilization. PloS One. 2015;10(3):e0122206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Lu L, Zhu B, Xu Q, Qi X, Chen X. QTL mapping of cucumber fruit flesh thickness by SLAF-seq. Sci Rep. 2015;5:15829.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mascher M, Muehlbauer GJ, Rokhsar DS, Chapman J, Schmutz J, Barry K, et al. Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ). Plant J. 2013;76:718–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mazzucotelli E, Belloni S, Marone D, De Leonardis AM, Guerra D, Di Fonzo N, et al. The E3 ubiquitin ligase gene family in plants: regulation by degradation. Curr Genomics. 2006;7(8):509–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li CD, Eckstein PE, Lu M, Rossnagel BG, Scoles GJ. Targeted development of a microsatellite marker associated with a true loose smut resistance gene in barley (Hordeumvulgare L.). Mol Breeding. 2001;8:235–42.
Article
CAS
Google Scholar
Hou XH, Li LC, Peng ZY, Wei BY, Tang SJ, Ding MY, et al. A platform of high-density INDEL/CAPS markers for map-based cloning in Arabidopsis. Plant J. 2010;63(5):880–8.
Article
CAS
PubMed
Google Scholar
Păcurar DI, Păcurar ML, Street N, Bussell JD, Pop TI, Gutierrez L, et al. A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J Exp Bot. 2012;63(7):2491–501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu DH, Wu HP, Wang CS, Tseng HY, Hwu KK, Wu DH. Genome-wide InDel marker system for application in rice breeding and mapping studies. Euphytica. 2013;192(1):131–43.
Article
Google Scholar
Kucera J, Lundqvist U, Gustafsson Å. Inheritance of breviaristatum mutants in barley. Hereditas. 1975;80:263–78.
Article
CAS
PubMed
Google Scholar
Franckowiak JD. Allelism tests among selected semi-dwarf barleys. Barley Genet Newsl. 1991;21:17–23.
Google Scholar
Pakniyat H, Thomas WTB, Caligari PDS, Forster BP. Comparison of salt tolerance of GPert and non-GPert barleys. Plant Breed. 1997;116:189–91.
Article
CAS
Google Scholar
Malosetti M, van Eeuwijk FA, Boer MP, Casas AM, Elía M, Moralejo M, et al. Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet. 2011;122(8):1605–16.
Article
PubMed
PubMed Central
Google Scholar
Aghnoum R, Marcel TC, Johrde A, Pecchioni N, Schweizer P, Niks RE. Basal host resistance of barley to powdery mildew: connecting quantitative trait loci and candidate genes. Mol Plant Microbe Interact. 2010;23:91–102.
Article
CAS
PubMed
Google Scholar
Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, et al. Genetic dissection of barley morphology and development. Plant Physiol. 2011;155:617–27.
Article
CAS
PubMed
Google Scholar
McGinnis KM, Thomas SG, Soule JD, Strader LC, Zale JM, Sun TP, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-Box subunit of an SCF E3 ubiquitin ligase. Plant Cell. 2003;15(5):1120–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomi K, Sasaki A, Itoh H, Ueguchi-Tankaka M, Ashikari M, Kitano H, et al. GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J. 2004;37(4):626–34.
Article
CAS
PubMed
Google Scholar
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, et al. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 2008;53:488–504.
Article
CAS
PubMed
Google Scholar
Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, et al. A sequence-ready physical map of barley anchored genetically by two million single-nucleotide polymorphisms. Plant Physiol. 2014;164(1):412–23.
Article
CAS
PubMed
Google Scholar
Mayer K, Waugh R, Brown J, Schulman A, Langridge P, Platzer M, et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–6.
CAS
PubMed
Google Scholar
Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res. 1980;8(19):4321–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, et al. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotech. 2012;30:174–8.
Article
CAS
Google Scholar
Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, et al. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013;74:174–83.
Article
CAS
PubMed
Google Scholar
Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, et al. MAPMAKER: An interactive computer package for construction primary genetic linkage maps of experimental and natural populations. Genomics. 1987;1:174–81.
Article
CAS
PubMed
Google Scholar
Kosambi DD. The estimation of map distances from recombination values. Ann Eugen. 1944;12:172–5.
Article
Google Scholar