Templeton A, Hofer S, Töpfer M, Sommacal A, Fretz C, Cerny T, Gillessen S. Extraneural spread of glioblastoma--report of two cases. Onkologie. 2008;31:192–4.
Article
PubMed
Google Scholar
Tania A, Arkaitz C, Boris J, Guillermo V, Garry M, Raphael M, Luis A, Manuel G, Ismael GR. Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem. 2007;282:6854–62.
Google Scholar
Scott J, Rewcastle N, Brasher P, Fulton D, Hagen N, MacKinnon J, Sutherland G, Cairncross J, Forsyth P. Long-term glioblastoma multiforme survivors: a population-based study. Can J Neurol Sci. 1998;25:197–201.
Article
CAS
PubMed
Google Scholar
Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E. MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer. 2009;125:1407–13.
Article
CAS
PubMed
Google Scholar
Lassman AB, Iwamoto FM, Gutin PH, Abrey LE. Patterns of relapse and prognosis after bevacizumab (BEV) failure in recurrent glioblastoma (GBM). J Clin Oncol. 2008;26:431–6.
Google Scholar
D’Amico A, Gabbani M, Dall’Oglio S, Cristofori L, Turazzi S, Sanzone E, Maluta S. Protracted administration of low doses of temozolomide (TMZ) in the treatment of relapse glioblastoma (GBM) enhances the antitumor activity of this agent. In: Asco Meeting. 2006. p. 810–3.
Google Scholar
Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors. Ann Rev Pathol Mech Dis. 2010;5:33–50.
Article
CAS
Google Scholar
Yu L, Maximilian D, Nathan W, Bollen AW, Aldape KD, M Kelly N, Lamborn KR, Berger MS, David B, Brown PO. Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc Natl Acad Sci. 2005;102:5814–9.
Article
Google Scholar
Shumin D, Nutt CL, Betensky RA, Stemmer-Rachamimov AO, Denko NC, Ligon KL, Rowitch DH, Louis DN. Histology-based expression profiling yields novel prognostic markers in human glioblastoma. J Neuropathol Exp Neurol. 2005;64:948–55.
Article
Google Scholar
Bertram JS. The molecular biology of cancer. Mol Aspects Med. 2000;21:167–223.
Article
CAS
PubMed
Google Scholar
Richards SJ. A handbook of parametric survival models for actuarial use. Scand Actuar J. 2012;2012:233–57.
Article
Google Scholar
Cox DR. Regression models and life-tables. J R Stat Soc. 1972;34:527–41.
Google Scholar
Crichton N. Cox proportional hazards model. J Clin Nurs. 2002;11:723.
Article
PubMed
Google Scholar
Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc. 1996;58:267–88.
Google Scholar
Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16:385–95.
Article
CAS
PubMed
Google Scholar
Fan J, Feng Y, Wu Y. High-dimensional variable selection for Cox’s proportional hazards model. J Am Stat Assoc. 2010;105:205–17.
Article
Google Scholar
Hong HG, Wang L, He X. A data-driven approach to conditional screening of high dimensional variables. 2015. Manuscript.
Google Scholar
Nelander S, Wang W, Nilsson B, She QB, Pratilas C, Rosen N, Gennemark P, Sander C. Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol. 2008;4:1484–94.
Article
Google Scholar
Sergio Iadevaia YL, Morales FC, Mills GB, Ram PT. Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. 2010;70:6704–14.
Article
PubMed
PubMed Central
Google Scholar
The Georgetown Database of Cancer G-DOC. https://gdoc.georgetown.edu/gdoc/. Accessed 28 Apr 2016.
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabinowitz L. Mathematical Statistics and data analysis. Elsevier; 2006.
Zhao SD, Li Y. Principled sure independence screening for Cox models with ultra-high-dimensional covariates. J Multivar Anal. 2012;105:397–411.
Article
PubMed
PubMed Central
Google Scholar
Takashi O. Drug target validation and identification of secondary drug target effects using DNA microarrays. Tanpakushitsu Kakusan Koso. 2007;52:1808–9.
Google Scholar
Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK, Rane S, Small PM. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999;284:1520–3.
Article
CAS
PubMed
Google Scholar
He GP, Muise A, Li AW, Ro HS. A eukaryotic transcriptional represser with carboxypeptidase activity. Nature. 1995;378:92–6.
Article
CAS
PubMed
Google Scholar
Ro HS, Kim SW, Wu D, Webber C, Nicholson TE. Gene structure and expression of the mouse adipocyte enhancer-binding protein. Gene. 2002;280:123–33.
Article
Google Scholar
Zhang L, Reidy SP, Nicholson TE, Lee HJ, Majdalawieh A, Webber C, Stewart BR, Dolphin P, Ro HS. The role of AEBP1 in sex-specific diet-induced obesity. Mol Med. 2005;11:39–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majdalawieh A, Zhang L, Ro HS. Adipocyte enhancer-binding protein-1 promotes macrophage inflammatory responsiveness by up-regulating NF-kappaB via IkappaBalpha negative regulation. Mol Biol Cell. 2007;18:930–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ladha J, Sinha S, Bhat V, Donakonda S, Rao SM. Identification of genomic targets of transcription factor AEBP1 and its role in survival of glioma cells. Mol Cancer Res. 2012;10:25–35.
Article
Google Scholar
Yu T, Scully S, Yu Y, Fox GM, Jing S, Zhou R. Expression of GDNF family receptor components during development: implications in the mechanisms of interaction. Journal of Neurosci. 1998;18:4684–96.
CAS
Google Scholar
Ku MC, Wolf SA, Respondek D, Matyash V, Pohlmann A, Waiczies S, Waiczies H, Niendorf T, Synowitz M, Glass R. GDNF mediates glioblastoma-induced microglia attraction but not astrogliosis. Acta Neuropathol. 2013;125:609–20.
Article
CAS
PubMed
Google Scholar
Hoelzinger DB, Tim D, Berens ME. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst. 2007;99:1583–93.
Article
CAS
PubMed
Google Scholar
Saletta F, Rahmanto YS, Richardson DR. The translational regulator eIF3a: the tricky eIF3 subunit! Biochim Biophys Acta. 1806;2010:275–86.
Google Scholar
Ji-Ye Y, Jie S, Zi-Zheng D, Qiong H, Mei-Zuo Z, De-Yun F, Hong-Hao Z, Jian-Ting Z, Zhao-Qian L. Effect of eIF3a on response of lung cancer patients to platinum-based chemotherapy by regulating DNA repair. Clin Cancer Res. 2011;17:4600–9.
Article
Google Scholar
R-Y L, Dong Z, Liu J, J-Y Y, Zhou L, Wu X, Yang Y, Mo W, Huang W, Khoo SK. Role of eIF3a in regulating cisplatin sensitivity and in translational control of nucleotide excision repair of nasopharyngeal carcinoma. Oncogene. 2011;30:4814–23.
Article
Google Scholar
Navani S. The human protein atlas. J Obstet Gynecol India. 2011;61:27–31.
Article
Google Scholar
Parajuli P, Mittal S. Role of IL-17 in Glioma Progression. Journal of Spine & Neurosurgery. 2013; Suppl 1:s1–004.
McLendon R, Friedman A, Bigner D, Van Meir EG, Brat JD. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2013;455:1061–8.
Article
Google Scholar
Akhavan D, Mischel PS. mTOR Signaling in Glioblastoma: Lessons Learned from Bench to Bedside. Neuro Oncol. 2010;12:882–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jhanwaruniyal M, Labagnara M, Friedman M, Kwasnicki A, Murali R. Glioblastoma: molecular pathways, stem cells and therapeutic targets. Cancers. 2015;7:538–55.
Article
Google Scholar
Arshawn S, Michael K. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Tumor Biol. 2013;34:1991–2002.
Article
Google Scholar
Zhang VE, Derynck R. Smad-dependent and Smad-independent pathways in TGF-ß family signalling. Nature. 2003;425:577–84.
Article
PubMed
Google Scholar
Joan S, Hong-Van L, Lijian S, Anderson SA, Joan M. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell. 2004;117:211–23.
Article
Google Scholar
Hiroaki I, Tomoki T, Yasushi I, Masamichi T, Nobuhito S, Keiji M, Kohei M. Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem. 2011;286:41434–41.
Article
Google Scholar
Han J, Alvarezbreckenridge CA, Wang QE, Yu J. TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res. 2015;5:945–55.
CAS
PubMed
PubMed Central
Google Scholar
Roy LO, Poirier MB, Fortin D. Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF-beta. Invest New Drugs. 2015;33:1020–31.
Article
CAS
PubMed
Google Scholar
Bogdahn U, Hau P, Stockhammer G, Venkataramana NK, Mahapatra AK, Suri A, Balasubramaniam A, Nair S, Oliushine V, Parfenov V. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 2010;13:132–42.
Article
PubMed
PubMed Central
Google Scholar
Huez I, Créancier L, Audigier S, Gensac MC, Prats AC, Prats H. Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol. 1998;18:6178–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stoneley M, Chappell S, Jopling CL, Dickens M, Macfarlane M, Willis A. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol. 2000;20:1162–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang KJD, Andreas K, Goodall GJ. Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell. 2002;13:1792–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lior B, Revital K, Iris BD, Sivan O, Silke K, Peter H, Martin P, Anja-Katrin B, Lily V. Aberrant expression of c-Jun in glioblastoma by internal ribosome entry site (IRES)-mediated translational activation. Proc Natl Acad Sci U S A. 2012;109:E2875–84.
Article
Google Scholar
Bioconductor:open source software for boinformatics. http://www.bioconductor.org/. Accessed 28 Apr 2016.
Miller FP, Vandome AF, Mcbrewster J. Interquartile: Interquartile Range. 2010.
Google Scholar
Singh R, Mukhopadhyay K. Survival analysis in clinical trials: basics and must know areas. Perspect Clin Res. 2011;2:145–8.
Article
PubMed
PubMed Central
Google Scholar
Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33:1–22.
Article
PubMed
PubMed Central
Google Scholar
Barut E, Fan J, Verhasselt A. Conditional Sure Independence Screening. J Am Stat Assoc. 2016;111:1266–77.
Mcclish DK. Analyzing a portion of the ROC curve. Med Decis Making. 1989;9:190–5.
Article
CAS
PubMed
Google Scholar
Pepe M. An interpretation for the ROC curve and inference using GLM procedures. Biometrics. 2000;56:352–9.
Article
CAS
PubMed
Google Scholar
Myers SC, Jin L. R-squared around the world: new theory and new tests. Ssrn Electron J. 2004;79:257–92.
Google Scholar
Kremers WK, Kremers WK. Concordance for survival time data: fixed and time-dependent covariates and possible ties in predictor and time. Mayo Foundation. 2007. http://www.mayo.edu/research/documents/biostat-80pdf/doc-10027891.
Simon N, Friedman JH, Hastie T, Tibshirani R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J Stat Softw. 2011;39:1–13.
Article
PubMed
PubMed Central
Google Scholar
Peng H, Peng T, Wen J, Engler DA, Matsunami RK, Su J, Zhang L, Chang CC, Zhou X. Characterization of p38 MAPK isoforms for drug resistance study using systems biology approach. Bioinformatics. 2014;30:1899–907.
Article
CAS
PubMed
PubMed Central
Google Scholar