Lloyd JR, Kossmann J. Transitory and storage starch metabolism: two sides of the same coin? Curr Opin Biotechnol. 2015;32:143–8.
Article
CAS
PubMed
Google Scholar
Sonnewald U, Kossmann J. Starches-from current models to genetic engineering. Plant Biotechnol J. 2013;11:223–32.
Article
CAS
PubMed
Google Scholar
Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, Ovecka M, Almagro G, Montero M, Ezquer I, Etxeberria E, Pozueta-Romero J. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnol Adv. 2014;32:87–106.
Article
CAS
PubMed
Google Scholar
Zeeman SC, Kossmann J, Smith AM. Starch: its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.
Article
CAS
PubMed
Google Scholar
Ohdan T, Francisco PB, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot. 2005;56:3229–44.
Article
CAS
PubMed
Google Scholar
Nakamura Y. Starch- metabolism and structure. Japan: Springer; 2015.
Google Scholar
Sparla F, Costa A, Lo SF, Pupillo P, Trost P. Redox regulation of a novel plastid-targeted b-amylase. Plant Physiol. 2006;141:840–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kötting O, Kossmann J, Zeeman SC, Lloyd JR. Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol. 2010;13:320–8.
Article
Google Scholar
Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farré EM, Geigenberger P. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase : a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell. 2002;14:2191–213.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu Y, Gehan JP, Sharkey TD. Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiol. 2005;138:2280–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol. 2004;136:2687–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tenorio G, Orea A, Romero JM, Mérida Á́. Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle. Plant Mol Biol. 2003;51:949–58.
Article
CAS
PubMed
Google Scholar
Zhu Y, Cai X-L, Wang Z-Y, Hong M-M. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene. J Biol Chem. 2003;278:47803–11.
Article
CAS
PubMed
Google Scholar
Sun C, Palmqvist S, Olsson H, Borén M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell. 2003;15:2076–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu F-F, Xue H-W. Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiol. 2010;154:927–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M. Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Planta. 2009;230:737–46.
Article
CAS
PubMed
Google Scholar
She K-C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell. 2010;22:3280–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salanoubat M, Belliard G. The steady-state level of potato sucrose synthase mRNA is dependent on wounding, anaerobiosis and sucrose concentration. Gene. 1989;84:181–5.
Article
CAS
PubMed
Google Scholar
Müller-Röber BT, Kossmann J, Hannah LC, Willmitzer L, Sonnewald U. One of two different ADP-glucose pyrophsphorylase genes from potato respond strongly to elevated levels of sucrose. Mol Gen Genet. 1990;224:136–46.
Article
PubMed
Google Scholar
Ferreira SJ, Senning M, Sonnewald S, Kessling P-M, Goldstein R, Sonnewald U. Comparative transcriptome analysis coupled to X-ray CT reveals sucrose supply and growth velocity as major determinants of potato tuber starch biosynthesis. BMC Genomics. 2010;11:93.
Article
PubMed
PubMed Central
Google Scholar
Geigenberger P, Stitt M. Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant J. 2000;23:795–806.
Article
CAS
PubMed
Google Scholar
Geigenberger P. Regulation of sucrose to starch conversion in growing potato tubers. J Exp Bot. 2003;54:457–65.
Article
CAS
PubMed
Google Scholar
Purcell PC, Smith AM, Halford NG. Antisense expression of a sucrose non fermenting 1 related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose inducibility of sucrose synthase transcripts in leaves. Plant J. 1998;14:195–202.
Article
CAS
Google Scholar
McKibbin RS, Muttucumaru N, Paul MJ, Powers SJ, Burrell MM, Coates S, Purcell PC, Tiessen A, Geigenberger P, Halford NG. Production of high-starch, low-glucose potatoes through over-expression of the metabolic regulator SnRK1. Plant Biotechnol J. 2006;4:409–18.
Article
CAS
PubMed
Google Scholar
Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DMA, Li G, Yang Y, et al. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–95.
Article
CAS
PubMed
Google Scholar
Sharma SK, Bolser D, de Boer J, Sønderkær M, Amoros W, Carboni MF, D’Ambrosio JM, de la Cruz G, Di Genova A, Douches DS, Eguiluz M, Guo X, Guzman F, Hackett C a, Hamilton JP, Li G, Li Y, Lozano R, Maass A, Marshall D, Martinez D, McLean K, Mejía N, Milne L, Munive S, Nagy I, Ponce O, Ramirez M, Simon R, Thomson SJ, et al. Construction of reference chromosome-scale pseudomolecules for potato: integrating the potato genome with genetic and physical maps. G3 (Bethesda). 2013;3:2031–47.
Article
PubMed Central
Google Scholar
Hirsch CD, Hamilton JP, Childs KL, Cepela J, Crisovan E, Vaillancourt B, Hirsch CN, Habermann M, Neal B, Buell CR. Spud DB: A Resource for Mining Sequences, Genotypes, and Phenotypes to Accelerate Potato Breeding. Plant Genome. 2014;7(1). doi:10.3835/plantgenome2013.12.0042.
Bailey TL, Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Second Int Conf Intell Syst Mol Biol. 1994;2:28–36.
CAS
Google Scholar
Jupe F, Pritchard L, Etherington GJ, MacKenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD, Hein I. Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics. 2012;13:75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spud DB Genome Browser [http://solanaceae.plantbiology.msu.edu/cgi-bin/gbrowse/potato/]. Accessed 1 June 2016.
Enseml Plants [http://plants.ensembl.org/Solanum_tuberosum/Location/Genome]. Accessed 10 Nov 2015.
Kersey PJ, Allen JE, Armean I, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Falin LJ, Grabmueller C, Humphrey J, Kerhornou A, Khobova J, Aranganathan NK, Langridge N, Lowy E, McDowall MD, Maheswari U, Nuhn M, Ong CK, Overduin B, Paulini M, Pedro H, Perry E, Spudich G, Tapanari E, Walts B, Williams G, Tello-Ruiz M, Stein J, et al. Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 2016;44:D574–580.
Werij JS, Furrer H, van Eck HJ, Visser RGF, Bachem CWB. A limited set of starch related genes explain several interrelated traits in potato. Euphytica. 2012;186:501–16.
Article
CAS
Google Scholar
Chen X, Salamini F, Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet. 2001;102:284–95.
Article
CAS
Google Scholar
Fernandez-Pozo N, Menda N, Edwards JD, Saha S, Tecle IY, Strickler SR, Bombarely A, Fisher-York T, Pujar A, Foerster H, Yan A, Mueller LA. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding. Nucleic Acids Res. 2015;43:D1036–41.
Article
PubMed
Google Scholar
Kloosterman B, De Koeyer D, Griffiths R, Flinn B, Steuernagel B, Scholz U, Sonnewald S, Sonnewald U, Bryan GJ, Prat S, Bánfalvi Z, Hammond JP, Geigenberger P, Nielsen KL, Visser RGF, Bachem CWB. Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array. Funct Integr Genomics. 2008;8:329–40.
Article
CAS
PubMed
Google Scholar
Hancock RD, Morris WL, Ducreux LJM, Morris J a, Usman M, Verrall SR, Fuller J, Simpson CG, Zhang R, Hedley PE, Taylor M a. Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ. 2014;37:439–50.
Article
CAS
PubMed
Google Scholar
POCI database [http://apex.ipk-gatersleben.de/apex/f?p=194:1]. Accessed 2 May 2016.
Kloosterman B, Vorst O, Hall RD, Visser RGF, Bachem CW. Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J. 2005;3:505–19.
Article
CAS
PubMed
Google Scholar
Jørgensen M, Stensballe A, Welinder KG. Extensive post-translational processing of potato tuber storage proteins and vacuolar targeting. FEBS J. 2011;278:4070–87.
Article
PubMed
Google Scholar
Hirose T, Terao T. A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta. 2004;220:9–16.
Article
CAS
PubMed
Google Scholar
Visser RGF, Hergersberg M, Van Der Leij FRR, Jacobsen E, Witholt B, Feenstra WJJ. Molecular cloning and partial characterization of the gene for granule-bound starch synthase from a wildtype and an amylose-free potato (Solanum tuberosum L.). Plant Sci. 1989;64:185–92.
Article
CAS
Google Scholar
Edwards A, Marshall J, Sidebottom C, Visser RG, Smith AM, Martin C. Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J. 1995;8:283–94.
Article
CAS
PubMed
Google Scholar
Marshall J, Sidebottom CM, Debet M, Martin C, Smith AM, Edwards A. Identification of the major starch synthase in the soluble fraction of pea embryos. Plant Cell. 1996;8:1121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kossmann J, Abel GJWW, Springer F, Lloyd JR, Willmitzer L. Cloning anf functional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed inleaf tissue. Planta. 1999;208:503–11.
Article
CAS
PubMed
Google Scholar
Larsson C, Hofvander P, Ek B, Rask L, Larsson H. Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Sci. 1996;117:9–16.
Article
CAS
Google Scholar
Abel GJW, Springer F, Willmitzer L, Kossmann J. Cloning and functional analysis of a cDNA encoding a novel 139 kDA starch synthase from potato (Solanum tuberosum L.). Plant J. 1996;10:981–91.
Article
CAS
PubMed
Google Scholar
Visser RGF, Stolte A, Jacobsen E. Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol. 1991;17:691–9.
Article
CAS
PubMed
Google Scholar
Liu H, Yu GG, Wei B, Wang Y, Zhang J, Hu Y, Liu Y, Yu GG, Zhang H, Huang Y. Identification and phylogenetic analysis of a novel starch synthase in maize. Front Plant Sci. 2015;6:1013.
PubMed
PubMed Central
Google Scholar
Poulsen P, Kreiberg JD. Starch branching enzyme cDNA from Solanum tuberosum. Plant Physiol. 1993;102:1053–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khoshnoodi J, Blennow a, Ek B, Rask L, Larsson H. The multiple forms of starch-branching enzyme I in Solanum tuberosum. Eur J Biochem. 1996;242:148–55.
Article
CAS
PubMed
Google Scholar
Jobling S a, Schwall GP, Westcott RJ, Sidebottom CM, Debet M, Gidley MJ, Jeffcoat R, Safford R. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: Cloning and characterisation of multiple forms of SBE A. Plant J. 1999;18:163–71.
Article
CAS
PubMed
Google Scholar
Wang X, Xue L, Sun J, Zuo J. The Arabidopsis BE1 gene, encoding a putative glycoside hydrolase localized in plastids, plays crucial roles during embryogenesis and carbohydrate metabolism. J Integr Plant Biol. 2010;52:273–88.
Article
CAS
PubMed
Google Scholar
Sonnewald U, Basner A, Greve B, Steup M. A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Biol. 1995;27:567–76.
Article
CAS
PubMed
Google Scholar
Albrecht T, Koch A, Lode A, Greve B, Schneider-Mergener J, Steup M. Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: Expression analysis and immunochemical characterization. Planta. 2001;213:602–13.
Article
CAS
PubMed
Google Scholar
La Cognata U, Willmitzer L, Müller-Röber B. Molecular cloning and characterization of novel isoforms of potato ADP-glucose pyrophosphorylase. Mol Gen Genet. 1995;246:538–48.
Article
PubMed
Google Scholar
Kotting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry MS, Comparot-Moss S, Chen J, Smith AM, Steup M, Ritte G, Zeeman SC. STARCH-EXCESS4 Is a Laforin-Like Phosphoglucan Phosphatase Required for Starch Degradation in Arabidopsis thaliana. Plant Cell Online. 2009;21:334–46.
Article
CAS
Google Scholar
Appeldoorn NJG, De Bruijn SM, Koot-Gronsveld EAM, Visser RGF, Vreugdenhil D, Van der Plas LHW. Developmental changes of enzymes involved in conversion of sucrose to hexose-phosphate during early tuberisation of potato. Planta. 1997;202:220–6.
Article
CAS
Google Scholar
Fu H, Park WD. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell. 1995;7:1369–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Viola R, Roberts a G, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell. 2001;13:385–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995;7:97–107.
Article
CAS
PubMed
Google Scholar
Baroja-Fernández E, Muñoz FJ, Montero M, Etxeberria E, Sesma MT, Ovecka M, Bahaji A, Ezquer I, Li J, Prat S, Pozueta-Romero J. Enhancing sucrose synthase activity in transgenic potato (Solanum tuberosum L.) tubers results in increased levels of starch, ADPglucose and UDPglucose and total yield. Plant Cell Physiol. 2009;50:1651–62.
Article
PubMed
Google Scholar
Kossmann J, Visser RGF, Müller-Röber BT, Willmitzer L, Sonnewald U. Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for co-expression of starch biosynthetic genes. Mol Gen Genet. 1991;230:39–44.
Article
CAS
PubMed
Google Scholar
Ferreira SJ, Sonnewald U. The mode of sucrose degradation in potato tubers determines the fate of assimilate utilization. Front Plant Sci. 2012;3:23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaminski KP, Petersen AH, Sønderkær M, Pedersen LH, Pedersen H, Feder C, Nielsen KL. Transcriptome analysis suggests that starch synthesis may proceed via multiple metabolic routes in high yielding potato cultivars. PLoS One. 2012;7:e51248.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Häusler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flügge UI, Ludewig F. Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. Plant Biotechnol J. 2008;6:453–64.
Article
CAS
PubMed
Google Scholar
Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol. 2004;7:235–46.
Article
CAS
PubMed
Google Scholar
Tetlow IJ, Emes MJ. A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB Life. 2014;66:546–58.
Article
CAS
PubMed
Google Scholar
Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009;32:1633–51.
Article
CAS
PubMed
Google Scholar
Movahedi S, Van Bel M, Heyndrickx KS, Vandepoele K. Comparative co-expression analysis in plant biology. Plant Cell Environ. 2012;35:1787–98.
Article
CAS
PubMed
Google Scholar
Ingkasuwan P, Netrphan S, Prasitwattanaseree S, Tanticharoen M, Bhumiratana S, Meechai A, Chaijaruwanich J, Takahashi H, Cheevadhanarak S. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model. BMC Syst Biol. 2012;6:100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Persson S, Wei H, Milne J, Page GP, Somerville CR. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. 2005;102:8633–38.
Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. 2007;104:6478–83.
Ha CM, Jun JH, Nam HG, Fletcher JC. BLADE-ON-PETIOLE 1 and 2 control Arabidopsis lateral organ fate through regulation of LOB domain and adaxial-abaxial polarity genes. Plant Cell. 2007;19:1809–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shuai B, Reynaga-Pena CG, Springer PS. The LATERAl ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiol. 2002;129:747–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith DL, Fedoroff NV. LRP1, a gene expressed in lateral and adventitious root primordia of Arabidopsis. Plant Cell. 1995;7:735–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Von BI, Zimmermann R, Ludwig Y, Hey S, Hochholdinger F. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1. J Exp Bot. 2015;66:3855–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grunewald W, De SI, Lewis DR, Löfke C, Jansen L, Goeminne G, Vanden BR, Karimi M, De RB, Vanholmea B, Teichmannf T, Boerjana W, Montagub MCE V, Gheysenc G, Mudaye GK, Frimla J, Beeckman T. Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci U S A. 2011;109:1554–9.
Article
Google Scholar
Grunewald W, De Smet I, De Rybel B, Robert HS, van de Cotte B, Willemsen V, Gheysen G, Weijers D, Friml J, Beeckman T. Tightly controlled WRKY23 expression mediates Arabidopsis embryo development. EMBO Rep. 2013;14:1136–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roumeliotis E, Kloosterman B, Oortwijn M, Kohlen W, Bouwmeester HJ, Visser RGF, Bachem CWB. The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato. J Exp Bot. 2012;63:4539–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
PubMed
PubMed Central
Google Scholar
Murashige T, Skoog F. A revised medium for rapid growth and Bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–97.
Article
CAS
Google Scholar
Logemann J, Schell J, Willmitzer L. Improved method for the isolation of RNA from plant tissues. Anal Biochem. 1987;163:16–20.
Article
CAS
PubMed
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
Article
CAS
PubMed
PubMed Central
Google Scholar