D’Hont A, Glaszmann JC. Sugarcane genome analysis with molecular markers, a first decade of research. Proc Int Soc Sugar Cane Technol. 2001;24:556–9.
Google Scholar
D’Hont A, Ison D, Alix K, Roux C, Glaszmann JC. Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes. Genome. 1998;41:221–5.
Article
Google Scholar
D’Hont A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res. 2005;109:27–33.
Article
PubMed
CAS
Google Scholar
Palhares AC, Rodrigues-Morais TB, Van Sluys MA, Domingues DS, Maccheroni W, Jordão H, et al. A novel linkage map of sugarcane with evidence for clustering of retrotransposon-based markers. BMC Genet. 2012;13:51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piperidis G, Piperidis N, D’Hont A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Mol Genet Genomics. 2010;284:65–73.
Article
CAS
PubMed
Google Scholar
Ha S, Moore PH, Heinz D, Kato S, Ohmido N, Fukui K. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods. Plant Mol Biol. 1999;39:1165–73.
Article
CAS
PubMed
Google Scholar
Daniels J, Roach BT. Taxonomy and evolution. In: Heinz DJ, editor. Sugarcane improvement through breeding. Amsterdam: Elsevier Press; 1987. p. 7–84.
Chapter
Google Scholar
Irvine JE. Saccharum species as horticultural classes. Theor Appl Genet. 1999;98:186–94.
Article
Google Scholar
Roach BT. Cytological studies in Saccharum. Chromosome transmission in interspecific and intergeneric crosses. Proc Int Soc Sugar Cane Technol. 1969;13:901–20.
Google Scholar
Balsalobre T, Mancini MC, Pereira GS, Anoni CO, Barreto FZ, Hoffmann HP, et al. A mixed-model approach for analysis of yield components and brown rust resistance in full-sib families of sugarcane. Agron J. 2016;108:1–14. doi:10.2134/agronj2015.0430.
Article
Google Scholar
Eksteen A, Singels A, Ngxaliwe S. Water relations of two contrasting sugarcane genotypes. Field Crops Res. 2014;168:86–100.
Article
Google Scholar
Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J. 2010;8:263–76. doi:10.1111/j.1467-7652.2009.00491.x.
Article
CAS
PubMed
Google Scholar
Adams KL, Wendel JF. Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005;8:135–41.
Article
CAS
PubMed
Google Scholar
Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316:1862–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012;109:19–45.
Article
Google Scholar
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013;110:99–104.
Article
CAS
PubMed
Google Scholar
Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, et al. Construction of a reference genetic linkage map for carnation (dianthus caryophyllus L.). BMC Genomics. 2013;14:734.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartholomé J, Mandrou E, Mabiala A, Jenkins J, Nabihoudine I, Klopp C, et al. High-resolution genetic maps of eucalyptus improve eucalyptus grandis genome assembly. New Phytol. 2015;206:1283–96.
Article
PubMed
CAS
Google Scholar
Deokar AA, Ramsay L, Sharpe AG, Diapari M, Sindhu A, Bett K, et al. Genome wide SNP identification in chickpea for use in development of a high density genetic map and improvement of chickpea reference genome assembly. BMC Genomics. 2014;15:708.
Article
PubMed
PubMed Central
CAS
Google Scholar
Portis E, Mauromicale G, Mauro R, Acquadro A, Scaglione D, Lanteri S. Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theor Appl Genet. 2009;120:59–70.
Article
CAS
PubMed
Google Scholar
Hudson CJ, Freeman JS, Kullan AR, Petroli CD, Sansaloni CP, Kilian A, et al. A reference linkage map for eucalyptus. BMC Genomics. 2012;13:240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hong Y, Chen X, Liang X, Liu H, Zhou G, Li S, et al. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol. 2010;10:17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanksley SD. The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet. 1992;83:294–300.
Article
CAS
PubMed
Google Scholar
Grattapaglia D, Sederoff R. Genetic linkage maps of eucalyptus grandis and eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genet. 1994;137:1121–37.
CAS
Google Scholar
Grivet L, D'Hont A, Dufour P, Hamon P, Roques D, Glaszmann JC. Comparative genome mapping of sugar cane with other species within the Andropogoneae tribe. Hered. 1994;73:500–8.
Article
CAS
Google Scholar
Da Silva J, Honeycutt RJ, Burnquist W, Al-Janabi SM, Sorrells ME, Tanksley SD, et al. Saccharum spontaneum L. ‘SES 208’ genetic linkage map combining RFLP and PCR based markers. Mol Breeding. 1995;1:165–79.
Article
CAS
Google Scholar
Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, et al. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet. 1997;94:409–18.
Article
CAS
Google Scholar
Ming R, Liu SC, Lin YR, da Silva J, Wilson W, Braga D, et al. Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics. 1998;150:1663–82.
CAS
PubMed
PubMed Central
Google Scholar
Asnaghi C, Paulet F, Kaye C, Grivet L, Deu M, Glaszmann JC, et al. Application of synteny across Poaceae to determine the map location of a sugarcane rust resistance gene. Theor Appl Genet. 2000;101:962–9.
Article
CAS
Google Scholar
Edmé SJ, Glynn NG, Comstock JC. Genetic segregation of microsatellite markers in Saccharum officinarum and S Spontaneum. Heredity. 2006;97:366–75.
Article
PubMed
CAS
Google Scholar
Pastina MM, Malosetti M, Gazaffi R, Mollinari M, Margarido GR, Oliveira KM, et al. A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theor Appl Genet. 2012;124:835–49.
Article
CAS
PubMed
Google Scholar
Pastina MM, Pinto LR, Oliveira KM, Souza AP, Garcia AAF. Molecular mapping of complex traits. In: Henry RJ, Kole C, editors. Genetics, genomics and breeding of sugarcane. Boca Raton: CRC Press; 2010.
Google Scholar
Andru S, Pan Y-B, Thongthawee S, Burner DM, Kimbeng CA. Genetic analysis of the sugarcane (Saccharum spp.) cultivar ‘LCP 85–384′. I. Linkage mapping using AFLP, SSR, and TRAP markers. Theor Appl Genet. 2011;123:77–93.
Article
PubMed
Google Scholar
Singh RK, Singh SP, Tiwari DK, Srivastava S, Singh SB, Sharma ML, et al. Genetic mapping and QTL analysis for sugar yield-related traits in sugarcane. Euphytica. 2013;191:333–53.
Article
CAS
Google Scholar
Aitken KS, McNeil MD, Hermann S, Bundock PC, Kilian A, Heller-Uszynska K, et al. A comprehensive genetic map of sugarcane that provides enhanced map coverage and integrates high-throughput diversity array technology (DArT) markers. BMC Genomics. 2014;15:152.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu P, Liao CY, Hu B, Yi KK, Jin WZ, Ni JJ, et al. QTLs and epistasis for aluminum tolerance in rice (Oryza sativa L.) at different seedling stages. Theor Appl Genet. 2000;100:1295–303.
Article
CAS
Google Scholar
Garcia AA, Kido EA, Meza AN, Souza HM, Pinto LR, Pastina MM, et al. Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet. 2006;112:298–314.
Article
CAS
PubMed
Google Scholar
Oliveira KM, Pinto LR, Marconi TG, Margarido GRA, Pastina MM, Teixeira LHM, et al. Functional integrated genetic linkage map based on EST-markers for a sugarcane (Saccharum spp.) commercial cross. Mol Breed. 2007;20:189–208.
Article
CAS
Google Scholar
Garcia AA, Mollinari M, Marconi TG, Serang OR, Silva RR, Vieira ML, et al. SNP genotyping allows an in-depth characterisation of the genome of sugarcane and other complex autopolyploids. Sci Rep. 2013;3:3399. doi:10.1038/srep03399.
Article
PubMed
PubMed Central
Google Scholar
Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, et al. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics. 2010;11:261.
Article
PubMed
PubMed Central
CAS
Google Scholar
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet. 2011;12:499–510.
Article
CAS
PubMed
Google Scholar
He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. 2014;5:484. doi:10.3389/fpls.2014.00484.
Article
PubMed
PubMed Central
Google Scholar
Kim SR, Ramos J, Ashikari M, Virk PS, Torres EA, Nissila E, et al. Development and validation of allele-specific SNP/indel markers for eight yield-enhancing genes using whole-genome sequencing strategy to increase yield potential of rice, Oryza sativa L. Rice. 2016;9:12. doi:10.1186/s12284-016-0084-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 2007;17:240–8. doi:10.1101/gr.5681207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6:e19379.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009;19:1068–76. doi:10.1101/gr.089516.108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y-F, Poland JA, Wight CP, Jackson EW, Tinker NA. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One. 2014;9:e102448. doi:10.1371/journal.pone.0102448.
Article
PubMed
PubMed Central
Google Scholar
Barabaschi D, Tondelli A, Desiderio F, Volante A, Vaccino P, Valè G, et al. Next generation breeding. Plant Sci. 2016;242:3–13. doi:10.1016/j.plantsci.2015.07.010.
Article
CAS
PubMed
Google Scholar
Byrne S, Czaban A, Studer B, Panitz F, Bendixen C, Asp T. Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PLoS One. 2013;8:e57438. doi:10.1371/journal.pone.0057438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, et al. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS One. 2013;8:e54603. doi:10.1371/journal.pone.0054603.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crossa J, Beyene Y, Kassa S, Pérez P, Hickey JM, Chen C, et al. Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 (Bethesda). 2013;3:1903–26. doi:10.1534/g3.113.008227.
Article
CAS
Google Scholar
Heslot N, Rutkoski J, Poland J, Jannink J-L, Sorrells ME. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS One. 2013;8:e74612. doi:10.1371/journal.pone.0074612.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, et al. Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet. 2013;126:2699–716. doi:10.1007/s00122-013-2166-x.
Article
CAS
PubMed
Google Scholar
Liu H, Bayer M, Druka A, Russell JR, Hackett CA, Poland J, et al. An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley. BMC Genomics. 2014;15:104. doi:10.1186/1471-2164-15-104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Verma S, Gupta S, Bandhiwal N, Kumar T, Bharadwaj C, Bhatia S. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Rep. 2015;5:17512. doi:10.1038/srep17512.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol. 2002;5:94–100.
Article
CAS
PubMed
Google Scholar
Hackett CA, McLean K, Bryan GJ. Linkage analysis and QTL mapping using SNP dosage data in a tetraploid potato mapping population. PLoS One. 2013;8:e63939. doi:10.1371/journal.pone.0063939.
Article
PubMed
PubMed Central
Google Scholar
Lee J, Izzah NK, Jayakodi M, Perumal S, Joh HJ, Lee HJ, et al. Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol. 2015;15:32. doi:10.1186/s12870-015-0424-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welham SJ, Gogel BJ, Smith AB, Thompson R, Cullis BR. A comparison of analysis methods for late-stage variety evaluation trials. Aust NZ J Stat. 2010;52:125–49. doi:10.1111/j.1467-842X.2010.00570.x.
Article
Google Scholar
Aitken KS, Hermann S, Karno K, Bonnett GD, McIntyre LC, Jackson PA. Genetic control of yield related stalk traits in sugarcane. Theor Appl Genet. 2008;117:1191–203.
Article
CAS
PubMed
Google Scholar
Margarido GRA, Pastina MM, Souza AP, Garcia AAF. Multi-trait multi-environment quantitative trait loci mapping for a sugarcane commercial cross provides insights on the inheritance of important traits. Mol Breeding. 2015;35:175.
Article
CAS
Google Scholar
Gazaffi R, Margarido GRA, Pastina MM, Mollinari M, Garcia AAF. A model for quantitative trait loci mapping, linkage phase, and segregation pattern estimation for a full-sib progeny. Tree Genet Genomes. 2014;10:791–801.
Article
Google Scholar
Souza LM, Gazaffi R, Mantello CC, Silva CC, Garcia D, Le Guen V, et al. QTL mapping of growth-related traits in a full-sib family of rubber tree (hevea brasiliensis) evaluated in a sub-tropical climate. PLoS One. 2013;8:e61238.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng ZB. Precision mapping of quantitative trait loci. Genet. 1994;136:1457–68.
CAS
Google Scholar
Vettore AL, da Silva FR, Kemper EL, Souza GM, da Silva AM, Ferro MI, et al. Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res. 2003;13:2725–35.
Article
PubMed
PubMed Central
Google Scholar
Cardoso-Silva CB, Costa EA, Mancini MC, Balsalobre TW, Canesin LE, Pinto LR, et al. De novo assembly and transcriptome analysis of contrasting sugarcane varieties. PLoS One. 2014;9:e88462.
Article
PubMed
PubMed Central
CAS
Google Scholar
Souza GM, Berges H, Bocs S, Casu R, D’Hont A, Ferreira JE, et al. The sugarcane genome challenge: strategies for sequencing a highly complex genome. Trop Plant Biol. 2011;4:145–56.
Article
CAS
Google Scholar
de Setta N, Monteiro-Vitorello CB, Metcalfe CJ, Cruz GM, Del Bem LE, Vicentini R, et al. Building the sugarcane genome for biotechnology and identifying evolutionary trends. BMC Genomics. 2014;15:540. doi:10.1186/1471-2164-15-540.
Article
PubMed
PubMed Central
Google Scholar
Metcalfe CJ, Oliveira SG, Gaiarsa JW, Aitken KS, Carneiro MS, Zatti F, et al. Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane. J Exp Bot. 2015;66:4239–50. doi:10.1093/jxb/erv283.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Janabi SM, Forget L, Dookun A. An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA. Plant Mol Biol Rep. 1999;17:1–8.
Article
Google Scholar
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. Tassel-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9:e90346.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grativol C, Regulski M, Bertalan M, McCombie WR, da Silva FR, Zerlotini Neto A, et al. Sugarcane genome sequencing by methylation filtration provides tools for genomic research in the genus Saccharum. Plant J. 2014;79:162–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.
Article
CAS
PubMed
Google Scholar
Serang O, Mollinari M, Garcia AA. Efficient exact maximum a posteriori computation for Bayesian SNP genotyping in polyploids. PLoS One. 2012;7:e30906. doi:10.1371/journal.pone.0030906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize implements and enhances circular visualization in R. Bioinformatics. 2014;30:2811–2.
Article
CAS
PubMed
Google Scholar
Oliveira KM, Pinto LR, Marconi TG, Mollinari M, Ulian EC, Chabregas SM, et al. Characterization of new polymorphic functional markers for sugarcane. Genome. 2009;52:191–209.
Article
CAS
PubMed
Google Scholar
Pinto LR, Oliveira KM, Marconi T, Garcia AAF, Ulian EC, de Souza AP. Characterization of novel sugarcane expressed sequence tag microsatellites and their comparison with genomic SSRs. Plant Breed. 2006;125:378–84.
Article
CAS
Google Scholar
Marconi TG, Costa EA, Miranda HR, Mancini MC, Cardoso-Silva CB, Oliveira KM, et al. Functional markers for gene mapping and genetic diversity studies in sugarcane. BMC Res Notes. 2011;4:264.
Article
PubMed
PubMed Central
Google Scholar
Singh RK, Jena SN, Khan S, Yadav S, Banarjee N, Raghuvanshi S, et al. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane. Gene. 2013;524:309–29.
Article
CAS
PubMed
Google Scholar
Cordeiro GM, Taylor GO, Henry RJ. Characterisation of microsatellite markers from sugarcane (Saccharum spp.), a highly polyploid species. Plant Sci. 2000;155:161–8.
Article
CAS
PubMed
Google Scholar
Raboin L-M, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, et al. Genetic mapping in sugarcane, a high polyploid, using bi-parental progeny: identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet. 2006;112:1382–91.
Article
CAS
PubMed
Google Scholar
Brown SM, Hopkins MS, Mitchell SE, Senior ML, Wang TY, Duncan RR, et al. Multiple methods for the identification of polymorphic simple sequence repeats (SSRs) in sorghum [sorghum bicolor (L.) Moench]. Theor Appl Genet. 1996;93:190–8.
Article
CAS
PubMed
Google Scholar
Kong L, Dong J, Hart GE. Characteristics, linkage-map positions, and allelic differentiation of sorghum bicolor (L.) Moench DNA simple-sequence repeats (SSRs). Theor Appl Genet. 2000;101:438–48.
Article
CAS
Google Scholar
Wang ML, Wang ML, Barkley NA, Yu J, Dean RE, Newman ML, et al. Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet Resour Newsl. 2005;3:45–57.
Article
CAS
Google Scholar
Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction : its application to mapping and gene tagging in Brassica. Theor Appl Genet. 2001;103:455–61.
Article
CAS
Google Scholar
Alwala S, Suman A, Arro JA, Veremis JC, Kimbeng CA. Target region amplification polymorphism (TRAP) for assessing genetic diversity in sugarcane germplasm collections. Crop Sci. 2006;46:448–55.
Article
CAS
Google Scholar
Creste S, Sansoli DM, Tardiani ACS, Silva DN, Gonçalves FK, Fávero TM, et al. Comparison of AFLP, TRAP and SSRs in the estimation of genetic relationships in sugarcane. Sugar Tech. 2010;12:150–54.
Article
CAS
Google Scholar
Suman A, Ali K, Arro J, Parco AS, Kimbeng CA, Baisakh N. Molecular diversity among members of the Saccharum complex assessed using TRAP Markers based on lignin-related genes. Bioenerg Res. 2012;5:197–205.
Article
CAS
Google Scholar
Hu J, Vick BA. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep. 2003;21:289–94.
Article
CAS
Google Scholar
Creste S, Neto AT, Figueira A. Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Mol Biol Rep. 2001;19:299–306.
Article
CAS
Google Scholar
Margarido GR, Souza AP, Garcia AA. OneMap: software for genetic mapping in outcrossing species. Hereditas. 2007;144:78–9.
Article
CAS
PubMed
Google Scholar
Wu R, Ma C-X, Painter I, Zeng Z-B. Simultaneous maximum likelihood estimation of linkage and linkage phases in outcrossing species. Theor Popul Biol. 2002;61:349–63.
Article
PubMed
Google Scholar
Wu R, Ma C-X, Wu SS, Zeng Z-B. Linkage mapping of sex-specific differences. Genet Res. 2002;79:85–96.
Article
PubMed
Google Scholar
Jiang C, Zeng Z-B. Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica. 1997;101:47–58.
Article
CAS
PubMed
Google Scholar
Voorrips RE. Computer Note MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered. 1994;93:77–8.
Article
Google Scholar
Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989;121:185–99.
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Storey JD. Relaxed significance criteria for linkage analysis. Genetics. 2006;173:2371–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. http://www.R-project.org/.
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6. doi:10.1093/bioinformatics/bti610.
Article
CAS
PubMed
Google Scholar
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.
Article
CAS
PubMed
Google Scholar
Li H, Vikram P, Singh RP, Kilian A, Carling J, Song J, et al. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genomics. 2015;16:216.
Article
PubMed
PubMed Central
CAS
Google Scholar
Heffelfinger C, Fragoso CA, Moreno MA, Overton JD, Mottinger JP, Zhao H, et al. Flexible and scalable genotyping-by-sequencing strategies for population studies. BMC Genomics. 2014;15:979. doi:10.1186/1471-2164-15-979.
Article
PubMed
PubMed Central
Google Scholar
Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G, et al. Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics. 2013;193:1073–81. doi:10.1534/genetics.112.147710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Z, Wang H, Michal JJ, Zhou X, Liu B, Woods LC, et al. Genome wide sampling sequencing for SNP genotyping: methods, challenges and future development. Int J Biol Sci. 2016;12:100–8. doi:10.7150/ijbs.13498.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grivet L, Arruda P. Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol. 2002;5:122–7.
Article
CAS
PubMed
Google Scholar
Mollinari M, Serang O. Quantitative SNP genotyping of polyploids with MassARRAY and other platforms. Methods Mol Biol. 2015;1245:215–41. doi:10.1007/978-1-4939-1966-6_17.
Article
CAS
PubMed
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2012;13:36–46.
CAS
Google Scholar
Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’hont A, Besse P, et al. Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed. 2005;15:367–81.
Article
CAS
Google Scholar
Aitken KS, Jackson PA, McIntyre CL. A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet. 2005;110:789–801.
Article
CAS
PubMed
Google Scholar
Aitken KS, Jackson PA, McIntyre CL. Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Genome. 2007;50:742–56.
Article
CAS
PubMed
Google Scholar
Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A. 2013;110:8057–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012;7:e32253. doi:10.1371/journal.pone.0032253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, et al. Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet. 2014;127:1817–29.
Article
PubMed
Google Scholar
Butterfield MK, D’Hont A, Berding N. The sugarcane genome: a synthesis of current understanding, and lessons for breeding and biotechnology. Proc South African Sugar Technology Assoc. 2001;75:1–5.
Google Scholar
Aitken KS, McNeil MD, Berkman PJ, Hermann S, Kilian A, Bundock PC, et al. Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane. BMC Plant Biol. 2014;14:190.
Article
PubMed
PubMed Central
Google Scholar
Glaszmann JC, Dufour P, Grivet L, D'Hont A, Deu M, Paulet F, et al. Comparative genome analysis between several tropical grasses. Euphytica. 1997;96:13–21.
Article
CAS
Google Scholar
Tang H, Bowers JE, Wang X, Ming R, Alam M, Paterson AH. Synteny and collinearity in plant genomes. Science. 2008;320:486–8.
Article
CAS
PubMed
Google Scholar
Salse J, Abrouk M, Murat F, Quraishi UM, Feuillet C. Improved criteria and comparative genomics tool provide new insights into grass paleogenomics. Brief Bioinform. 2009;10:619–30.
Article
CAS
PubMed
Google Scholar
Margarido GRA, Heckermann D. ConPADE: Genome Assembly Ploidy Estimation from next-generation sequencing data. PLoS Comput Biol. 2015;11(4):e1004229. doi:10.1371/journal.pcbi.1004229.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malosetti M, Ribaut J-M, van Eeuwijk FA. The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front Physiol. 2013;4:44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Janabi SM, Parmessur Y, Kross H, Dhayan S, Saumtally S, Ramdoyal K, et al. Identification of a major quantitative trait locus (QTL) for yellow spot (Mycovellosiella koepkei) disease resistance in sugarcane. Mol Breed. 2007;19:1–14.
Article
Google Scholar
Sills GR, Bridges W, Al-Janabi SM, Sobral BWS. Genetic analysis of agronomic traits in a cross between sugarcane (Saccharum officinarum L.) and its presumed progenitor. (S robustum Brandes & Jesw. Ex Grassl). Mol Breed. 1995;1:355–63.
Article
CAS
Google Scholar
Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, et al. A putative major gene for rust resistance linked with a RFLP marker in sugarcane cultivar ‘R570. Theor Appl Genet. 1996;92:1059–64.
Article
CAS
PubMed
Google Scholar
Guimarães CT, Sills GR, Sobral BW. Comparativemapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci U S A. 1997;94:14261–6.
Article
PubMed
PubMed Central
Google Scholar
Asnaghi C, D’hont A, Glaszmann JC, Rott P. Resistance of sugarcane cultivar R570 to Puccinia melanocephala from different geographic locations. Plant Dis. 2001;85:282–6.
Article
Google Scholar
Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH. QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res. 2001;11:2075–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ming R, Del Monte TA, Hernandez E, Moore PH, Irvine JE, Paterson AH. Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes. Genome. 2002;45:794–803.
Article
CAS
PubMed
Google Scholar
Ming R, Wang W, Draye X, Moore H, Irvine E, Paterson H. Molecular dissection of complex traits in autopolyploids: mapping QTLs affecting sugar yield and related traits in sugarcane. Theor Appl Genet. 2002;105:332–45.
Article
CAS
PubMed
Google Scholar
Hoarau JY, Grivet L, Offmann B, Raboin LM, Diorflar JP, Payet J, et al. Genetic dissection of a modern sugarcane cultivar (Saccharum spp.).II. Detection of QTLs for yield components. Theor Appl Genet. 2002;105:1027–37.
Article
PubMed
Google Scholar
Silva JA, Bressiani JA. Sucrose synthase molecular marker associated with sugar content in elite sugarcane progeny. Genet Mol Biol. 2005;28:294–8.
Article
Google Scholar
Aitken KS, Jackson PA, McIntyre CL. Quantitative trait loci identified for sugar related traits in a sugarcane (Saccharum spp.) cultivar x Saccharum officinarum population. Theor Appl Genet. 2006;112:1306–17.
Article
CAS
PubMed
Google Scholar
Raboin LM, Pauquet J, Butterfield M, D’hont A, Glaszmann JC. Analysis of genome-wide linkage disequilibriumin the highly polyploid sugarcane. Theor Appl Genet. 2008;116:701–14.
Article
CAS
PubMed
Google Scholar
Wei X, Jackson PA, McIntyre CL, Aitken KS, Croft B. Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet. 2006;114:155–64.
Article
CAS
PubMed
Google Scholar
Piperidis N, Jackson PA, D’hont A, Besse P, Hoarau J, Courtois B, et al. Comparative genetics in sugarcane enables structured map enhancement and validation of marker-trait associations. Mol Breed. 2008;21:233–47.
Article
Google Scholar
Pinto LR, Garcia AAF, Pastina MM, Teixeira LHM, Bressiani JA, Ulian EC, et al. Analysis of genomic and functional RFLP derived markers associated with sucrose content, fiber and yield QTLs in a sugarcane (Saccharum spp.) commercial cross. Euphytica. 2010;172:313–27.
Article
CAS
Google Scholar
Jordan DR, Casu RE, Besse P, Carroll BC, Berding N, McIntyre CL. Markers associated with stalk number and suckering in sugarcane colocate with tillering and rhizomatousness QTLs in sorghum. Genome. 2004;47:988–93.
Article
CAS
PubMed
Google Scholar
Craxton M. Synaptotagmin gene content of the sequencedgenomes. BMC Genomics. 2004;5:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Coussens L, Parker PJ, Rhee L, Yang-Feng TL, Chen E, Waterfield MD, et al. Multiple, distinct forms of bovine and human protein kinase C suggest diversity in cellular signaling pathways. Science. 1986;233:859–66.
Article
CAS
PubMed
Google Scholar
Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, et al. Arabidopsis Synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell. 2008;20:3374–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin DH, Choi M-G, Lee HK, Cho M, Choi S-B, Choi G, et al. Calcium dependent sucrose uptake links sugar signaling to anthocyanin biosynthesis in Arabidopsis. Biochem Biophys Res Commun. 2013;430:634–9.
Article
CAS
PubMed
Google Scholar
Hochmal AK, Schulze S, Trompelt K, Hippler M. Calcium-dependent regulation of photosynthesis. Biochim Biophys Acta. 1847;2015:993–1003.
Google Scholar
Papini-Terzi FS, Rocha FR, Vêncio RZN, Felix JM, Branco DS, Waclawovsky AJ, Bem LEVD, Lembke CG, Costa MDL, Junior MYN, Vicentini R, Vincentz MGA, Ulian EC, Menossi M, Souza GM. Sugarcane genes associated with sucrose contente. BMC Genomics. 2009;10:120. doi:10.1186/1471-2164-10-120.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robson F, Costa MM, Hepworth SR, Vizir I, Piñeiro M, Reeves PH, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J. 2001;28:619–31.
Article
CAS
PubMed
Google Scholar
Chou ML, Shih MC, Chan MT, Liao SY, Hsu CT, Haung YT, et al. Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla. Planta. 2013;237:1425–41.
Article
CAS
PubMed
Google Scholar
Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008;59:573–94.
Article
CAS
PubMed
Google Scholar
Kovi MR, Sablok G, Bai X, Wendell M, Rognli OA, Yu H, et al. Expression patterns of photoperiod and temperature regulated heading date genes in Oryza sativa. Comput Biol Chem. 2013;45:36–41.
Article
CAS
PubMed
Google Scholar
Liu T, Zhu S, Tang Q, Tang S. Identification of a CONSTANS homologous gene with distinct diurnal expression patterns in varied photoperiods in ramie (Boehmeria nivea L Gaud). Gene. 2015;560:63–70.
Article
CAS
PubMed
Google Scholar
Islam MS, Fang DD, Thyssen GN, Delhom CD, Liu Y, Kim HJ. Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC Plant Biol. 2016;16:36. doi:10.1186/s12870-016-0727-2.
Article
PubMed
PubMed Central
Google Scholar
Manetti ME, Rossi M, Cruz GMQ, Saccaro NL, Nakabashi M, Altebarmakian V, et al. Mutator system derivatives isolated from sugarcane genome sequence. Trop Plant Biol. 2012;5:233–43.
Article
CAS
PubMed
PubMed Central
Google Scholar