Chevin LM, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics. 2008;180(3):1645–60.
Article
PubMed
PubMed Central
Google Scholar
Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Curr Biol. 2010;20(4):R208–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen JD. On the unfounded enthusiasm for soft selective sweeps. Nat Commun. 2014;5:10.
Google Scholar
Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4(6):457–69.
Article
CAS
PubMed
Google Scholar
Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 2009;461(7268):1243–U1274.
Article
Google Scholar
Burke MK. How does adaptation sweep through the genome? Insights from long-term selection experiments. Proc R Soc B Biol Sci. 2012;279(1749):5029–38.
Article
Google Scholar
Hermisson J, Pennings PS. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics. 2005;169(4):2335–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez RD, Kelley JL, Elyashiv E, Melton SC, Auton A, McVean G, Sella G, Przeworski M, Genomes P. Classic selective sweeps were rare in recent human evolution. Science. 2011;331(6019):920–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke MK, Liti G, Long AD. Standing genetic variation drives repeatable experimental evolution in outcrossing populations of Saccharomyces cerevisiae. Mol Biol Evol. 2014;31(12):3228–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheng ZY, Pettersson ME, Honaker CF, Siegel PB, Carlborg O. Standing genetic variation as a major contributor to adaptation in the Virginia chicken lines selection experiment. Genome Biol. 2015;16:219.
Article
PubMed
PubMed Central
Google Scholar
Pritchard JK, Di Rienzo A. Adaptation - not by sweeps alone. Nat Rev Genet. 2010;11(10):665–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Remolina SC, Chang PL, Leips J, Nuzhdin SV, Hughes KA. Genomic basis of aging and life-history evolution in Drosophila melanogaster. Evolution. 2012;66(11):3390–403.
Article
PubMed
PubMed Central
Google Scholar
Turner TL, Miller PM, Cochrane VA. Combining genome-wide methods to investigate the genetic complexity of courtship song variation in drosophila melanogaster. Mol Biol Evol. 2013;30(9):2113–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jalvingh KM, Chang PL, Nuzhdin SV, Wertheim B. Genomic changes under rapid evolution: selection for parasitoid resistance. Proc R Soc B Biol Sci. 2014;281(1779):10.
Article
Google Scholar
Martins NE, Faria VG, Nolte V, Scholtterer C, Teixeira L, Sucena E, Magalhaes S. Host adaptation to viruses relies on few genes with different cross-resistance properties. Proc Natl Acad Sci U S A. 2014;111(16):5938–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siegel PB, Gross WB. Production and persistence of antibodies in chickens to sheep erythrocytes.1. Directional selection. Poult Sci. 1980;59(1):1–5.
Article
Google Scholar
Siegel PB, Gross WB, Cherry JA. Correlated responses of chickens to selection for production of antibodies to sheep erythrocytes. Anim Blood Groups Biochem Genet. 1982;13(4):291–7.
Article
CAS
PubMed
Google Scholar
Boa-Amponsem K, Dunnington EA, Siegel PB. Antibody transmitting ability of hens from lines of chickens differing in response to SRBC antigen. Br Poultry Sci. 1997;38(5):480–4.
Article
CAS
Google Scholar
Johansson AM, Pettersson ME, Siegel PB, Carlborg O. Genome-wide effects of long-term divergent selection. PLoS Genet. 2010;6(11):12.
Article
Google Scholar
Hernandez RD. A flexible forward simulator for populations subject to selection and demography. Bioinformatics. 2008;24(23):2786–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Groenen MAM, Wahlberg P, Foglio M, Cheng HH, Megens HJ, Crooijmans R, Besnier F, Lathrop M, Muir WM, Wong GKS, et al. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 2009;19(3):510–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhou H, Li H, Lamont SJ. Genetic markers associated with antibody response kinetics in adult chickens. Poult Sci. 2003;82(5):699–708.
Article
CAS
PubMed
Google Scholar
Siwek M, Cornelissen SJB, Nieuwland MGB, Buitenhuis AJ, Bovenhuis H, Crooijmans R, Groenen MAM, Vries-Reilingh G, Parmentier HK, van der Poel JJ. Detection of QTL for immune response to sheep red blood cells in laying hens. Anim Genet. 2003;34(6):422–8.
Article
CAS
PubMed
Google Scholar
Siwek M, Buitenhuis B, Cornelissen S, Nieuwland M, Knol EF, Crooijmans R, Groenen M, Parmentier H, van der Poel J. Detection of QTL for innate: Non-specific antibody levels binding LPS and LTA in two independent populations of laying hens. Dev Comp Immunol. 2006;30(7):659–66.
Article
CAS
PubMed
Google Scholar
Biscarini F, Bovenhuis H, van Arendonk JAM, Parmentier HK, Jungerius AP, van der Poel JJ. Across-line SNP association study of innate and adaptive immune response in laying hens. Anim Genet. 2010;41(1):26–38.
Article
CAS
PubMed
Google Scholar
Zhang L, Li P, Liu RR, Zheng MQ, Sun Y, Wu D, Hu YD, Wen J, Zhao GP. The identification of loci for immune traits in chickens using a genome-wide association study. PLoS One. 2015;10(3):16.
Google Scholar
Geng TY, Guan XJ, Smith EJ. Screening for genes involved in antibody response to sheep red blood cells in the chicken, Gallus gallus. Poult Sci. 2015;94(9):2099–107.
Article
CAS
PubMed
Google Scholar
Dunnington EA, Martin A, Briles RW, Briles WE, Gross WB, Siegel PB. Antibody-responses to sheep erythrocytes for White Leghorn chickens differing in haplotypes of the Major Histocompatibility Complex (B). Anim Genet. 1989;20(2):213–6.
CAS
PubMed
Google Scholar
Martin A, Dunnington EA, Gross WB, Briles WE, Briles RW, Siegel PB. Production traits and alloantigen systems in lines of chickens selected for high or low antibody-responses to sheep erythrocytes. Poult Sci. 1990;69(6):871–8.
Article
CAS
PubMed
Google Scholar
Dunnington EA, Siegel PB. Long-term divergent selection for eight-week body weight in White Plymouth Rock chickens. Poult Sci. 1996;75(10):1168–79.
Article
CAS
PubMed
Google Scholar
Hill WG. Understanding and using quantitative genetic variation. Philos Trans R Soc B Biol Sci. 2010;365(1537):73–85.
Article
Google Scholar
Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD. Genome-wide analysis of a long-term evolution experiment with Drosophila. Nature. 2010;467(7315):587–U111.
Article
Google Scholar
Tobler R, Franssen SU, Kofler R, Orozco-terWengel P, Nolte V, Hermisson J, Schlotterer C. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol Biol Evol. 2014;31(2):364–75.
Article
CAS
PubMed
Google Scholar
Coop G, Pickrell JK, Novembre J, Kudaravalli S, Li J, Absher D, Myers RM, Cavalli-Sforza LL, Feldman MW, Pritchard JK. The role of geography in human adaptation. PLoS Genet. 2009;5(6):16.
Article
Google Scholar
Janeway CAJ, Travers P, Walport M. Immunobiology: the immune system in health and disease. 5th ed. New York: Garland Science; 2001.
Google Scholar
Gross WG, Siegel PB, Hall RW, Domermuth CH, Duboise RT. Production and persistence of antibodies in chickens to sheep erythrocytes.2. Resistance to infectious-diseases. Poult Sci. 1980;59(2):205–10.
Article
CAS
PubMed
Google Scholar
Bumstead N. Genetic resistance to avian viruses. Revue Scientifique et Technique de l’Office International des Epizooties. 1998;17(1):249–55.
Article
CAS
Google Scholar
Koenen ME, Boonstra-Blom AG, Jeurissen SHM. Immunological differences between layer- and broiler-type chickens. Vet Immunol Immunopathol. 2002;89:47–56.
Article
CAS
PubMed
Google Scholar
Kramer J, Visscher AH, Wagenaar JA, Cornelissen J, Jeurissen SHM. Comparison of natural resistance in seven genetic groups of meat-type chicken. Br Poultry Sci. 2003;44:577–85.
Article
CAS
Google Scholar
Lyu MG, Li Y, Hao YT, Sun TT, Liu WJ, Lyu CC, Fu RF, Li HY, Xue F, Liu XF, et al. Elevated Semaphorin 5A correlated with Th1 polarization in patients with chronic immune thrombocytopenia. Thromb Res. 2015;136(5):859–64.
Article
CAS
PubMed
Google Scholar
Sugimoto M, Fujikawa A, Womack JE, Sugimoto Y. Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance. Proc Natl Acad Sci U S A. 2006;103(17):6454–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melin M, Carlsson B, Anckarsater H, Rastam M, Betancur C, Isaksson A, Gillberg C, Dahl N. Constitutional downregulation of SEMA5A expression in autism. Neuropsychobiology. 2006;54(1):64–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol. 1998;16:137–61.
Article
CAS
PubMed
Google Scholar
Li MO, Wan YY, Sanjabi S, Robertson AKL, Flavell RA. Transforming growth factor-beta regulation of immune responses. In: Annual Review of Immunology, vol. 24. Palo Alto: Annual Reviews; 2006. p. 99–146.
Google Scholar
Loeys BL, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, De Backer JF, Oswald GL, Symoens S, Manouvrier S, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355(8):788–98.
Article
CAS
PubMed
Google Scholar
Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17(1-2):41–58.
Article
CAS
PubMed
Google Scholar
Klein J. Natural history of the major histocompatibility complex. New York: Wiley & Sons; 1986.
Google Scholar
Dorshorst BJ, Siegel PB, Ashwell CM. Genomic regions associated with antibody response to sheep red blood cells in the chicken. Anim Genet. 2011;42(3):300–8.
Article
CAS
PubMed
Google Scholar
Kaufman J, Milne S, Gobel TWF, Walker BA, Jacob JP, Auffray C, Zoorob R, Beck S. The chicken B locus is a minimal essential major histocompatibility complex. Nature. 1999;401(6756):923–5.
Article
CAS
PubMed
Google Scholar
Kaufman J. What chickens would tell you about the evolution of antigen processing and presentation. Curr Opin Immunol. 2015;34:35–42.
Article
CAS
PubMed
Google Scholar
Briles WE, Stone HA, Cole RK. Mareks-disease - effects of B-histocompatibility alloalleles in resistant and susceptible chicken lines. Science. 1977;195(4274):193–5.
Article
CAS
PubMed
Google Scholar
Sherman MA, Goto RM, Moore RE, Hunt HD, Lee TD, Miller MM. Mass spectral data for 64 eluted peptides and structural modeling define peptide binding preferences for class I alleles in two chicken MHC-B haplotypes associated with opposite responses to Marek's disease. Immunogenetics. 2008;60(9):527–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedrick PW. Balancing selection and MHC. Genetica. 1998;104(3):207–14.
Article
PubMed
Google Scholar
Charbonnel N, Pemberton J. A long-term genetic survey of an ungulate population reveals balancing selection acting on MHC through spatial and temporal fluctuations in selection. Heredity. 2005;95(5):377–88.
Article
CAS
PubMed
Google Scholar
Wegmann TG, Smithies O. A simple hemagglutination system requiring small amounts of red cells and antibodies. Transfusion. 1966;6(1):67.
Article
Google Scholar
Zhao XL, Honaker CF, Siegel PB. Phenotypic responses of chickens to long-term selection for high or low antibody titers to sheep red blood cells. Poult Sci. 2012;91(5):1047–56.
Article
CAS
PubMed
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. Genome project data P: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
Article
PubMed
PubMed Central
Google Scholar
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kofler R, Orozco-terWengel P, De Maio N, Pandey RV, Nolte V, Futschik A, Kosiol C, Schloetterer C. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. Plos One. 2011;6:1.
Article
Google Scholar
Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC, Anderson N, Biagi TM, Patterson N, Pielberg GR, Kulbokas III EJ, et al. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet. 2007;39(11):1321–8.
Article
CAS
PubMed
Google Scholar
Alexander M, Ho SYW, Molak M, Barnett R, Carlborg O, Dorshorst B, Honaker C, Besnier F, Wahlberg P, Dobney K, et al. Mitogenomic analysis of a 50-generation chicken pedigree reveals a rapid rate of mitochondrial evolution and evidence for paternal mtDNA inheritance. Biol Lett. 2015;11:10.
Article
Google Scholar
Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432(7018):695–716.
Article
CAS
Google Scholar
Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, Rynes E, Maurano MT, Vierstra J, Thomas S, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012;28(14):1919–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.
Article
CAS
Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi HY, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mi H, Poudel S, Muruganujan A, Casagrande JT, Thomas PD. PANTHER version 10: expanded protein families and functions, and analysis tools. Nucleic Acids Res. 2016;44(D1):D336–42.
Article
PubMed
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–92.
Article
CAS
PubMed
Google Scholar
Abramovich F, Benjamini Y, Donoho DL, Johnstone IM. Adapting to unknown sparsity by controlling the false discovery rate. Ann Stat. 2006;34(2):584–653.
Article
Google Scholar
Gavrilov Y, Benjamini Y, Sarkar SK. An adaptive step-down procedure with proven fdr control under independence. Ann Stat. 2009;37(2):619–29.
Article
Google Scholar
Kessner D, Turner TL, Novembre J. Maximum Likelihood Estimation of Frequencies of Known Haplotypes from Pooled Sequence Data. Mol Biol Evol. 2013;30:5:1145–58.