O’Mara FP. The role of grasslands in food security and climate change. Ann Bot. 2012;110(6):1263–70.
Article
PubMed
PubMed Central
Google Scholar
Hayward AC. The hosts of Xanthomonas. In: Swings J, Civerolo EL, editors. Xanthomonas. London: Chapman & Hall; 1993. p. 1–119.
Chapter
Google Scholar
Egli T, Goto M, Schmidt D. Bacterial wilt, a new forage grass disease. Phytopathol Z. 1975;82:111–21.
Article
Google Scholar
Egli T, Schmidt D. Pathogenic variation among the causal agents of bacterial wilt of forage grasses. Phytopathol Z. 1982;104:138–50.
Article
Google Scholar
Schmidt D, Neusch B. Resistance to bacterial wilt (Xanthomonas graminis) increases yield and persistency of Lolium multiflorum. EPPO Bulletin. 1980;10(3):335–9.
Article
Google Scholar
Boller B, Peter-Schmid MKI, Tresch E, Tanner P, Schubiger FX. Ecotypes of Italian ryegrass from Swiss permanent grassland outperform current recommended cultivars. Euphytica. 2009;170:53–65.
Article
Google Scholar
Michel VV. Interactions between Xanthomonas campestris pv. graminis strains and meadow fescue and Italian rye grass cultivars. Plant Dis. 2001;85:538–42.
Article
Google Scholar
Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature. 2004;428:764–7.
Article
CAS
PubMed
Google Scholar
Erbs G, Newman MA. The role of lipopolysaccharide and peptidoglycan, two glycosylated bacterial microbe-associated molecular patterns (MAMPs), in plant innate immunity. Mol Plant Pathol. 2012;13(1):95–104.
Article
CAS
PubMed
Google Scholar
Kay S, Bonas U. How Xanthomonas type III effectors manipulate the host plant. Curr Opin Microbiol. 2009;12:37–43.
Article
CAS
PubMed
Google Scholar
Büttner D, Noël L, Stuttmann J, Bonas U. Characterization of the nonconserved hpaB-hrpF region in the hrp pathogenicity island from Xanthomonas campestris pv. vesicatoria. MPMI. 2007;20(9):1063–74.
Article
PubMed
Google Scholar
Wichmann F, Vorhölter FJ, Hersemann L, Widmer F, Blom J, Niehaus K, Reinhard S, Conradin C, Kölliker R. The noncanonical type III secretion system of Xanthomonas translucens pv. graminis is essential for forage grass infection. Mol Plant Pathol. 2013;14(6):576–88.
Article
CAS
PubMed
Google Scholar
Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997;61(2):136–69.
CAS
PubMed
PubMed Central
Google Scholar
Pesce C, Bolot S, Cunnac S, Portier P, Fischer-Le Saux M, Jacques MA, Gagnevin L, Arlat M, Noël LD, Carrère S, et al. High-quality draft genome sequence of the Xanthomonas translucens pv. cerealis pathotype strain CFBP 2541. Genome Announc. 2015;3(1):e01574–01514.
Article
PubMed
PubMed Central
Google Scholar
Peng Z, Hu Y, Xie J, Potnis N, Akhunova A, Jones J, Liu Z, White FF, Liu S. Long read and single molecule DNA sequencing simplifies genome assembly and TAL effector gene analysis of Xanthomonas translucens. BMC Genomics. 2016;17:21.
Article
PubMed
PubMed Central
Google Scholar
Hersemann L, Wibberg D, Widmer F, Vorhölter FJ, Kölliker R. Draft genome sequences of three Xanthomonas translucens pathovar reference strains (pv. arrhenatheri, pv. poae and pv. phlei) with different specificities for forage grasses. Stand Genomic Sci. 2016;11:50.
Article
PubMed
PubMed Central
Google Scholar
Jaenicke S, Bunk B, Wibberg D, Spröer C, Hersemann L, Blom J, Winkler A, Schatschneider S, Albaum S, Kölliker R, et al. Complete genome sequence of the barley pathogen Xanthomonas translucens pv. translucens DSM 18974T/ATCC 19319T. Genome Announc. 2016;4(6):e01334-16.
Gardiner DM, Upadhyaya NM, Stiller J, Ellis JG, Dodds PN, Kazan K, Manners JM. Genomic analysis of Xanthomonas translucens pathogenic on wheat and barley reveals cross-kingdom gene transfer events and diverse protein delivery systems. PLoS One. 2014;9(1):e84995.
Article
PubMed
PubMed Central
Google Scholar
Paul VH, Smith IM. Bacterial pathogens of Gramineae: systematic review and assessment of quarantine status for the EPPO region. Bull OEPP/EPPO Bull. 1989;19:33–42.
Article
Google Scholar
Kölliker R, Kraehenbuehl R, Boller B, Widmer F. Genetic diversity and pathogenicity of the grass pathogen Xanthomonas translucens pv. graminis. Syst Appl Microbiol. 2006;29:109–19.
Article
PubMed
Google Scholar
William S, Feil H, Copeland A. Bacterial genomic DNA isolation using CTAB. In: Protocols Joint Genome Institute; 2012. http://jgi.doe.gov/collaborate-with-jgi/pmo-overview/protocols-sample-preparation-information/. Accessed 20 Dec 2016
Glenn TC. Field guide to next-generation DNA sequencers. Mol Ecol Resour. 2011;11:759–69.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Speed TP. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 2012;40(10):e72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wibberg D, Andersson L, Tzelepis G, Rupp O, Blom J, Jelonek L, Pühler A, Fogelqvist J, Varrelmann M, Schlüter A, et al. Genome analysis of the sugar beet pathogen Rhizoctonia solani AG2-2IIIB revealed high numbers in secreted proteins and cell wall degrading enzymes. BMC Genomics. 2016;17:245.
Article
PubMed
PubMed Central
Google Scholar
Linke B, Giegerich R, Goesmann A. Conveyor: a workflow engine for bioinformatic analyses. Bioinformatics. 2011;27(7):903–11.
Article
CAS
PubMed
Google Scholar
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Article
PubMed
PubMed Central
Google Scholar
Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blom J, Kreis J, Spänig S, Juhre T, Bertelli C, Ernst C, Goesmann A. EDGAR 2.0: an enhanced software platform for comparative gene content analyses. Nucleic Acids Res. 2016;44(W1):W22.
Article
PubMed
PubMed Central
Google Scholar
Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 2003;31(1):365–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222.
Article
CAS
PubMed
Google Scholar
Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007;35:D1–D65.
Article
Google Scholar
Vauterin L, Yang B, Hoste B, Pot B, Swings J, Kersters K. Taxonomy of xanthomonads from cereals and grasses based on SDS-PAGE of proteins, fatty acid analysis and DNA hybridization. J Gen Microbiol. 1992;138:1467–77.
Article
CAS
Google Scholar
Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ, Zakrzewski M, Goesmann A. EDGAR: A software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics. 2009;10:154.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Felsenstein J. PHYLIP-phylogeny inference package (version 3.2). Cladistics. 1989;5:163–6.
Article
Google Scholar
Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. PNAS. 2005;102(7):2567–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015;43(D1):D222.
Article
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Fenselau S, Bonas U. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. MPMI. 1995;8(6):845–54.
Article
CAS
PubMed
Google Scholar
Imam S, Chen Z, Roos DS, Pohlschroeder M. Identification of surprisingly diverse type IV pili, across a broad range of Gram-positive bacteria. PLoS One. 2011;6(12):e28919.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wichmann F, Müller Hug B, Widmer F, Boller B, Studer B, Kölliker R. Phenotypic and molecular genetic characterization indicate no major race-specific interactions between Xanthomonas translucens pv. graminis and Lolium multiflorum. Plant Pathol. 2011;60(2):314–24.
Article
CAS
Google Scholar
R Core Team. Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2016.
Siguier P, Filée J, Chandler M. Insertion sequences in prokaryotic genomes. Curr Opin Microbiol. 2006;9(5):526–31.
Article
CAS
PubMed
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1:18.
Article
PubMed
PubMed Central
Google Scholar
Pesce C, Bolot S, Berthelot E, Bragard C, Cunnac S, Fischer-Le Saux M, Portier P, Arlat M, Gagnevin L, Jacques MA, et al. Draft genome sequence of Xanthomonas translucens pv. graminis pathotype strain CFBP 2053. Genome Announc. 2015;3(5):e01174–01115.
Article
PubMed
PubMed Central
Google Scholar
Van den Mooter M, Swings J. Numerical analysis of 295 phenotypic features of 266 Xanthomonas strains and related strains and an improved taxonomy of the genus. Int J Syst Bacteriol. 1990;40(4):348–69.
Article
PubMed
Google Scholar
Tans-Kersten J, Huang H, Allen C. Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol. 2001;183(12):3597–605.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmidt D. Epidemiological aspects of bacterial wilt of fodder grasses. Bull OEPP/EPPO Bull. 1989;19:89–95.
Article
Google Scholar
Boyer F, Fichant G, Berthod J, Vandenbrouck Y, Attree I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics. 2009;10:104.
Article
PubMed
PubMed Central
Google Scholar
Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, Hood RD, Rohmer L, Tolker-Nielsen T, Skerrett SJ, Mougous JD. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 2010;6(8):e1001068.
Article
PubMed
PubMed Central
Google Scholar
Kim SY, Kim JG, Lee BM, Cho JY. Mutational analysis of the gum gene cluster required for xanthan biosynthesis in Xanthomonas oryzae pv oryzae. Biotechnol Lett. 2009;31:265–70.
Article
CAS
PubMed
Google Scholar
Vorhölter FJ, Niehaus K, Pühler A. Lipopolysaccharide biosynthesis in Xanthomonas campestris pv. campestris: a cluster of 15 genes is involved in the biosynthesis of the LPS O-antigen and the LPS core. Mol Genet Genomics. 2001;266:79–95.
Article
PubMed
Google Scholar
Ojanen T, Helander IM, Haahtela K, Korhonen TK, Laakso T. Outer membrane proteins and lipopolysaccharides in pathovars of Xanthomonas campestris. Appl Environ Microbiol. 1993;59(12):4143–51.
CAS
PubMed
PubMed Central
Google Scholar
Lu H, Patil P, Van Sluys MA, White FF, Ryan RP, Dow JM, Rabinowicz P, Salzberg SL, Leach JE, Sonti R, et al. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in Xanthomonas. PLoS One. 2008;3(11):e3828.
Article
PubMed
PubMed Central
Google Scholar
Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS. Xanthomonas citri subsp. citri type IV pilus is required for twitching motility, biofilm development, and adherence. Mol Plant-Microbe Interact. 2014;27(10):1132–47.
Article
PubMed
Google Scholar
Craig L, Pique ME, Tainer JA. Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol. 2004;2(5):363–78.
Article
CAS
PubMed
Google Scholar
Dunger G, Llontop E, Guzzo CR, Farah CS. The Xanthomonas type IV pilus. Curr Opin Microbiol. 2016;30:88–97.
Article
CAS
PubMed
Google Scholar
Weber E, Koebnik R. Positive selection of the Hrp pilin HrpE of the plant pathogen Xanthomonas. J Bacteriol. 2006;188(4):1405–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weber E, Ojanen-Reuhs T, Huguet E, Hause G, Romantschuk M, Korhonen TK, Bonas U, Koebnik R. The type III-dependent Hrp pilus is required for productive interaction of Xanthomonas campestris pv. vesicatoria with pepper host plants. J Bacteriol. 2005;187(7):2458–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32.
Article
CAS
PubMed
Google Scholar
Weber E, Koebnik R. Domain structure of HrpE, the Hrp pilus subunit of Xanthomonas campestris pv. vesicatoria. J Bacteriol. 2005;187(17):6175–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan IK, Rogozin IB, Wolf YI, Koonin EV. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 2002;12:962–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Desvaux M, Hébraud M, Talon R, Henderson IR. Secretion and subcellular localization of bacterial proteins: a semantic awareness issue. Trends Microbiol. 2009;17(4):139–45.
Article
CAS
PubMed
Google Scholar
Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 2005;15:757–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rott P, Fleites L, Marlow G, Royer M, Gabriel DW. Identification of new candidate pathogenicity factors in the xylem-invading pathogen Xanthomonas albilineans by transposon mutagenesis. Mol Plant-Microbe Interact. 2011;24(5):594–605.
Article
CAS
PubMed
Google Scholar
Koebnik R, Kruger A, Thieme F, Urban A, Bonas U. Specific binding of the Xanthomonas campestris pv. vesicatoria AraC-type transcriptional activator HrpX to plant-inducible promoter boxes. J Bacteriol. 2006;188(21):7652–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33:376–93.
Article
CAS
PubMed
Google Scholar
Schwartz AR, Potnis N, Timilsina S, Wilson M, Patané J, Martins Jr J, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N, et al. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Front Microbiol. 2015;6:535.
Article
PubMed
PubMed Central
Google Scholar
Johnson TL, Abendroth J, Hol WGJ, Sandkvist M. Type II secretion: from structure to function. FEMS Microbiol Lett. 2006;255:175–86.
Article
CAS
PubMed
Google Scholar
Blanvillain S, Meyer D, Boulanger A, Lautier M, Guynet C, Denancé N, Vasse J, Lauber E, Arlat M. Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS One. 2007;2(2):e224.
Article
PubMed
PubMed Central
Google Scholar
Mole BM, Baltrus DA, Dangl JL, Grant SR. Global virulence regulation networks in phytopathogenic bacteria. Trends Microbiol. 2007;15(8):363–71.
Article
CAS
PubMed
Google Scholar
Jalan N, Kumar D, Andrade MO, Yu F, Jones JB, Graham JH, White FF, Setubal JC, Wang N. Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics. 2013;14:551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray NE. Type I, restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev. 2000;64(2):412–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Low DA, Weyand NJ, Mahan MJ. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect Immun. 2001;69(12):7197–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim JS, Li J, Barnes IHA, Baltzegar DA, Pajaniappan M, Cullen TW, Trent MS, Burns CM, Thompson SA. Role of the Campylobacter jejuni Cj1461 DNA methyltransferase in regulating virulence characteristics. J Bacteriol. 2008;190(19):6524–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wen Y, Behiels E, Devreese B. Toxin-antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis. 2014;70:240–9.
Article
CAS
PubMed
Google Scholar
Gerdes K. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J Bacteriol. 2000;182(3):561–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins PM, Machado M, Silva N, Takita MA, de Souza A. Type II toxin-antitoxin distribution and adaptive aspects on Xanthomonas genomes: focus on Xanthomonas citri. Front Microbiol. 2016;7:652.
PubMed
PubMed Central
Google Scholar
Triplett LR, Shidore T, Long J, Miao J, Wu S, Han Q, Zhou C, Ishihara H, Li J, Zhao B, et al. AvrRxoI is a bifunctional type III secreted effector and toxin-antitoxin system component with homologs in diverese environmental contexts. PLoS One. 2016;11(7):e0158856.
Article
PubMed
PubMed Central
Google Scholar
Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD, Tsuge S, Furutani A, Ochiai H, Delcher AL, Kelley D, et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics. 2008;9:204.
Article
PubMed
PubMed Central
Google Scholar
Lee SW, Han SW, Bartley LE, Ronald PC. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. PNAS. 2006;103(49):18395–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee HM, Tyan SW, Leu WM, Chen LY, Chen DC, Hu NT. Involvement of the XpsN protein in formation of the XpsL-XpsM complex in Xanthomonas campestris pv. campestris type II secretion apparatus. J Bacteriol. 2001;183(2):528–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darrasse A, Carrere S, Barbe V, Boureau T, Arrieta-Ortiz ML, Bonneau S, Briand M, Brin C, Cociancich S, Durand K, et al. Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics. 2013;14:761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tang JL, Liu YN, Barber CE, Dow JM, Wootton JC, Daniels MJ. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharides in Xanthomonas campestris pathovar campestris. Mol Gen Genet. 1991;226:409–17.
Article
CAS
PubMed
Google Scholar
Katzen F, Becker A, Zorreguieta A, Puehler A, Ielpi L. Promoter analysis of the Xanthomonas campestris pv. campestris gum operon directing biosynthesis of the xanthan polysaccharide. J Bacteriol. 1996;178(14):4313–8.
Article
CAS
PubMed
PubMed Central
Google Scholar