Herden T, Hanelt P, Friesen N. Phylogeny of Allium L. subgenus Anguinum (G. Don. ex W.D.J. Koch) N. Friesen (Amaryllidaceae). Mol Phylogenet Evol. 2016;95:79–93.
Article
PubMed
Google Scholar
Ni X, Su H, Zhou Y, Wang F, Liu W. Leaf-shape remodeling: programmed cell death in fistular leaves of Allium fistulosum. Physiol Plant. 2015;153:419–31.
Article
CAS
PubMed
Google Scholar
Meier P, Finch A, Evan G. Apoptosis in development. Nature. 2000;407:796–801.
Article
CAS
PubMed
Google Scholar
Gunawardena A, Greenwood J, Dengler N. Programmed cell death remodels lace plant leaf shape during development. Plant Cell. 2004;16:60–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gunawardena A, Sault K, Donnelly P, Greenwood J, Dengler N. Programmed cell death and leaf morphogenesis in Monstera obliqua (Araceae). Planta. 2005;221:607–18.
Article
CAS
PubMed
Google Scholar
Labani R, Elkington T. Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity. 1987;59:119–28.
Article
Google Scholar
Baranyi M, Greilhuber J. Genome size in Allium: in quest of reproducible data. Ann Bot. 1999;83:687–95.
Article
Google Scholar
Ricroch A, Yockteng R, Brown SC, Nadot S. Evolution of genome size across some cultivated Allium species. Genome. 2005;48:511–20.
Article
CAS
PubMed
Google Scholar
Kitts P, Church D, Thibaud-Nissen F, Choi J, Hem V, Sapojnikov V, Smith R, Tatusova T, Xiang C, Zherikov A, et al. Assembly: a resource for assembled genomes at NCBI. Nucleic Acids Res. 2016;44:D73–80.
Article
PubMed
Google Scholar
Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S. De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics. 2013;14:125.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mutz K, Heilkenbrinker A, Lonne M, Walter J, Stahl F. Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol. 2013;24:22–30.
Article
CAS
PubMed
Google Scholar
Liu T, Tang S, Zhu S, Tang Q, Zheng X. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud). Plant Mol Biol. 2014;86:85–92.
Article
CAS
PubMed
Google Scholar
Koenig D, Jiménez-Gómez J, Kimura S, Fulopa D, Chitwooda D, Headlanda L, Kumara R, Covingtona M, Devisettya U, Tata A, et al. Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. Proc Natl Acad Sci U S A. 2013;110:E2655–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lou Q, Liu Y, Qi Y, Jiao S, Tian F, Jiang L, Wang Y. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot. 2014;65:3157–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamenetsky R, Faigenboim A, Mayer E, Michael T, Gershberg C, Kimhi S, Esquira I, Shalom S, Eshel D, Rabinowitch H, et al. Integrated transcriptome catalogue and organspecific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics. 2015;16:12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu T, Zeng L, Zhu S, Chen X, Tang Q, Mei S, Tang S. Large-scale development of expressed sequence tag-derived simple sequence repeat markers by deep transcriptome sequencing in garlic (Allium sativum L.). Mol Breed. 2015;35:204.
Article
Google Scholar
Rajkumar H, Ramagoni R, Anchoju V, Vankudavath R, Syed A. De novo transcriptome analysis of Allium cepa L. (Onion) bulb to identify allergens and epitopes. PLoS One. 2015;10:e0135387.
Article
PubMed
PubMed Central
Google Scholar
Zhou S, Chen L, Liu S, Wang X, Sun X. De novo assembly and annotation of the Chinese chive (Allium tuberosum Rottler ex Spr.) transcriptome using the Illumina platform. PLoS One. 2015;10:e0133312.
Article
PubMed
PubMed Central
Google Scholar
Sun X, Yu X, Zhou S, Liu S. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology. Mol Genet Genomics. 2016;291:647–59.
Article
CAS
PubMed
Google Scholar
Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert Jr C, Roos D. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
PubMed
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Shah C, VanGompel MJW, Naeem V, Chen Y, Lee T, Angeloni N, Wang Y, Xu E. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function. PLoS Genet. 2010;6:e1001022.
Article
PubMed
PubMed Central
Google Scholar
Young M, Wakefield M, Smyth G, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.
Article
PubMed
PubMed Central
Google Scholar
Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li C, Wei L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39:W316–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B. 1995;57:289–300.
Google Scholar
Friesen N, Fritsch R, Blattner F. Phylogeny and new intrageneric classification of Allium (Alliaceae) based on nuclear ribosomal DNA ITS sequences. Aliso. 2006;22:372–95.
Google Scholar
Reape T, Brogan N, McCabe P. Mitochondrion and chloroplast regulation of plant programmed cell death. In: Gunawardena A, McCabe P, editors. Plant Programmed Cell Death. New York: Springer; 2015. p. 33–53.
Chapter
Google Scholar
Lam E, Zhang Y. Regulating the reapers: activating metacaspases for programmed cell death. Trends Plant Sci. 2012;17:487–94.
Article
CAS
PubMed
Google Scholar
Yamaguchi T, Tsukaya H. Evolutionary and developmenta studies of unifacial leaves in monocots: Juncus as a model system. J Plant Res. 2010;123:35–41.
Article
PubMed
Google Scholar
Yamaguchi T, Nukazuka A, Tsukaya H. Leaf adaxial–abaxial polarity specification and lamina outgrowth: evolution and development. Plant Cell Physiol. 2012;53:1180–94.
Article
CAS
PubMed
Google Scholar
Yamaguchi T, Yano S, Tsukaya H. Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell. 2010;22:2141–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH. A comparative anatomical study on the leaves of some bulb crops in China. J Integr Plant Biol. 1952;1:1–7.
Google Scholar
Diamond M, McCabe P. Mitochondrial regulation of plant programmed cell death. In: Kempken F, editor. Plant mitochondria, vol 1, Advances in plant biology. New York: Springer; 2011. p. 439–65.
Google Scholar
Helm M, Schmid M, Hierl G, Terneus K, Tan L, Lottspeich F, Kieliszewski M, Gietl C. KDEL-tailed cysteine endopeptidases involved in programmed cell death, intercalation of new cells, and dismantling of extension scaffolds. Am J Bot. 2008;95:1049–62.
Article
CAS
PubMed
Google Scholar
Lord C, Dauphinee A, Watts R, Gunawardena. A unveiling interactions among mitochondria, caspase-Like proteases, and the actin cytoskeleton during plant programmed cell death (PCD). PLoS ONE. 2013;8:e57110.
Kim C, Meskauskiene R, Zhang S, Lee K, Ashok M, Blajecka K, Herrfurth C, Feussner I, Apela K. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell. 2012;24:3026–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aken O, Breusegem F. Licensed to kill: mitochondria, chloroplasts, and cell death. Trends Plant Sci. 2015;20:754–66.
Article
PubMed
Google Scholar
Kuriyama H, Fukuda H. Developmental programmed cell death in plants. Curr Opin Plant Biol. 2002;5:568–73.
Article
CAS
PubMed
Google Scholar
Amiard S, Depeiges A, Allain E, White C, Gallego M. Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. Plant Cell. 2011;23:254–4265.
Article
Google Scholar
Smetana O, Siroky J, Houlne G, Opatrny Z, Chaboute M. Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression. J Exp Bot. 2012;63:2631–44.
Article
CAS
PubMed
Google Scholar
Morita-Yamamuro C, Tsutsui T, Sato M, Yoshioka H, Tamaoki M, Ogawa D, Matsuura H, Yoshihara T, Ikeda A, Uyeda I, et al. The Arabidopsis gene CAD1 controls programmed cell death in the plant immune system and encodes a protein containing a MACPF domain. Plant Cell Physiol. 2005;46:902–12.
Article
CAS
PubMed
Google Scholar
Coll N, Epple P, Dangl J. Programmed cell death in the plant immune system. Cell Death Differ. 2011;18:1247–56.
Article
CAS
PubMed
PubMed Central
Google Scholar