Trail F. For blighted waves of grain: Fusarium graminearum in the postgenomics era. Plant Physiol. 2009;149:103–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Waskiewicz A, Golinski P. Mycotoxins in foods, feeds and their components. Krmiva. 2013;55:35–45.
Google Scholar
Morgavi DP, Riley RT. Fusarium and their toxins: Mycology, occurrence, toxicity, control and economic impact. Anim Feed Sci Technol. 2007;137:199–200.
Article
Google Scholar
Brown NA, Bass C, Baldwin TK, Chen H, Massot F, Carion PW, et al. Characterisation of the Fusarium graminearum-wheat floral interaction. J Pathog. 2011;2011:626345.
PubMed
PubMed Central
Google Scholar
Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem. 2007;71:2105–23.
Article
CAS
PubMed
Google Scholar
Alexander NJ, McCormick SP, Waalwijk C, van der Lee T, Proctor RH. The genetic basis for 3-ADON and 15-ADON trichothecene chemotypes in Fusarium. Fungal Genet Biol. 2011;48:485–95.
Article
CAS
PubMed
Google Scholar
Lee T, Han YK, Kim KH, Yun SH, Lee YW. Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Env Microbiol. 2002;68:2148–54.
Article
CAS
Google Scholar
Cumagun CJR, Bowden RL, Jurgenson JE, Leslie J, Miedaner T. Genetic mapping of pathogenicity and agressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology. 2004;94:520–6.
Jin F, Bai G, Zhang D, Dong Y, Ma L, Bockus W, et al. Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. winter wheat. Phytopathology. 2014;104:472–8.
Article
CAS
PubMed
Google Scholar
Paul PA, Lipps PE, Madden LV. Relationship between visual estimates of Fusarium head blight intensity and deoxynivalenol accumulation in harvested wheat grain: a meta-analysis. Phytopathology. 2005;95:1225–36.
Article
CAS
PubMed
Google Scholar
Talas F, Kalih R, Miedaner T, McDonald BA. Genome-wide association study identifies novel candidate genes for aggressiveness, deoxynivalenol production and azole sensitivity in natural field populations of Fusarium graminearum. Mol Plant-Microbe Interact. 2016;10:1094–29.
Google Scholar
Terzi V, Tumino G, Stanca AM, Morcia C. Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species. J Cereal Sci. 2014;59:284–93.
Article
CAS
Google Scholar
Chen Y, Zhou M-G. Characterization of Fusarium graminearum Isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology. 2009;99:441–6.
Article
CAS
PubMed
Google Scholar
Talas F, McDonald BA. Significant variation in sensitivity to a DMI fungicide in field populations of Fusarium graminearum. Plant Pathol. 2015;64:664–70.
Article
CAS
Google Scholar
Ward TJ, Clear RM, Rooney AP, O’Donnell K, Gaba D, Patrick S, et al. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet Biol. 2008;45:473–84.
Article
PubMed
Google Scholar
Zeller KA, Bowden RL, Leslie JF. Population differentiation and recombination in wheat scab populations of Gibberella zeae from the United States. Mol Ecol. 2004;13:563–71.
Article
PubMed
Google Scholar
Akinsanmi OA, Backhouse D, Simpfendorfer S, Chakraborty S. Genetic diversity of Australian Fusarium graminearum and F. pseudograminearum. Plant Pathol. 2006;55:494–504.
Article
CAS
Google Scholar
Gale LR, Ward TJ, Balmas V, Kistler HC. Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology. 2007;97:1434–9.
Article
CAS
PubMed
Google Scholar
Leslie JF, Anderson LL, Bowden RL, Lee Y-W. Inter- and intra-specific genetic variation in Fusarium. Int J Food Microbiol. 2007;119:25–32.
Article
CAS
PubMed
Google Scholar
Boutigny A-L, Ward T, Ballois N, Iancu G, Ioos R. Diversity of the Fusarium graminearum species complex on French cereals. Eur J Plant Pathol. 2014;138:133–48.
Article
CAS
Google Scholar
Liang JM, Xayamongkhon H, Broz K, Dong Y, McCormick SP, Abramova S, et al. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States. Fungal Genet Biol. 2014;73:83–92.
Article
CAS
PubMed
Google Scholar
Van der Lee T, Zhang H, van Diepeningen A, Waalwijk C. Biogeography of Fusarium graminearum species complex and chemotypes: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2015;32:453–60.
Article
PubMed
PubMed Central
Google Scholar
McDonald B, Linde C. The population genetics of plant pathogens and breeding strategies for durable resistance. Euphytica. 2002;124:163–80.
Article
CAS
Google Scholar
Talas F, McDonald B. Genome-wide analysis of Fusarium graminearum field populations reveals hotspots of recombination. BMC Genomics. 2015;16:996.
Article
PubMed
PubMed Central
Google Scholar
Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol. 2000;31:7–20.
Article
CAS
PubMed
Google Scholar
Keller M, Bergstrom G, Shields E. The aerobiology of Fusarium graminearum. Aerobiologia (Bologna). 2014;30:123–36.
Article
Google Scholar
Maldonado-Ramirez SL, Schmale Iii DG, Shields EJ, Bergstrom GC. The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agric For Meteorol. 2005;132:20–7.
Article
Google Scholar
Prussin AJ, Li Q, Malla R, Ross SD, Schmale DG. Monitoring the long-distance transport of Fusarium graminearum from field-scale sources of inoculum. Plant Dis. 2013;98:504–11.
Article
Google Scholar
Prussin AJ, Szanyi NA, Welling PI, Ross SD, Schmale DG. Estimating the Production and Release of Ascospores from a Field-Scale Source of Fusarium graminearum Inoculum. Plant Dis. 2013;98:497–503.
Article
Google Scholar
Schmale Iii DG, Leslie JF, Zeller KA, Saleh AA, Shields EJ, Bergstrom GC. Genetic structure of atmospheric populations of Gibberella zeae. Phytopathology. 2006;96:1021–6.
Article
PubMed
Google Scholar
Stukenbrock EH, McDonald BA. The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol. 2008;46:75–100.
Article
CAS
PubMed
Google Scholar
Pombert J-F, Xu J, Smith DR, Heiman D, Young S, Cuomo CA, et al. Complete genome sequences from three genetically distinct strains reveal high intraspecies genetic diversity in the microsporidian Encephalitozoon cuniculi. Eukaryot Cell. 2013;12:503–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ojeda DI, Dhillon B, Tsui CKM, Hamelin RC. Single-nucleotide polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-associated symbiotic fungus, using whole-genome resequencing. Mol Ecol Resour. 2014;14:401–10.
Article
CAS
PubMed
Google Scholar
Zander M, Patel DA, Van de Wouw A, Lai KT, Lorenc MT, Campbell E, et al. Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Funct Integr Genomics. 2013;13:294–308.
Article
Google Scholar
Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, et al. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. MBio. 2015;6:e00536–15.
CAS
PubMed
PubMed Central
Google Scholar
Hane JK, Anderson JP, Williams AH, Sperschneider J, Singh KB. Genome sequencing and comparative genomics of the broad host-range pathogen Rhizoctonia solani AG8. PLoS Genet. 2014;10:e1004281.
Article
PubMed
PubMed Central
Google Scholar
Persoons A, Morin E, Delaruelle C, Payen T, Halkett F, Frey P, et al. Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors. Front Plant Sci. 2014;5.
Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, Kliebenstein DJ. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Front Microbiol. 2015;6:996.
Article
PubMed
PubMed Central
Google Scholar
McDonald MC, Williams AH, Milgate A, Pattemore JA, Solomon PS, Hane JK. Next-generation re-sequencing as a tool for rapid bioinformatic screening of presence and absence of genes and accessory chromosomes across isolates of Zymoseptoria tritici. Fungal Genet Biol. 2015;79:71–5.
Article
CAS
PubMed
Google Scholar
Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 2008;4:e1000046. Public Library of Science.
Article
PubMed
PubMed Central
Google Scholar
King R, Urban M, Hammond-Kosack M, Hassani-Pak K, Hammond-Kosack K. The completed genome sequence of the pathogenic ascomycete fungus Fusarium graminearum. BMC Genomics. 2015;16:544.
Article
PubMed
PubMed Central
Google Scholar
Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007;317:1400–2.
Article
CAS
PubMed
Google Scholar
Wong P, Walter M, Lee W, Mannhaupt G, Münsterkötter M, Mewes H-W, et al. FGDB: revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res. 2011;39:D637–9.
Article
CAS
PubMed
Google Scholar
Brown NA, Antoniw J, Hammond-Kosack KE. The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One. 2012;7:e33731.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rampitsch C, Day J, Subramaniam R, Walkowiak S. Comparative secretome analysis of Fusarium graminearum and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro. Proteomics. 2013;13:1913–21.
Article
CAS
PubMed
Google Scholar
Lowe RGT, McCorkelle O, Bleackley M, Collins C, Faou P, Mathivanan S, et al. Extracellular peptidases of the cereal pathogen Fusarium graminearum. Front Plant Sci. 2015;6.
Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, et al. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet. 2005;48:366–79.
Article
CAS
PubMed
Google Scholar
Sieber CMK, Lee W, Wong P, Münsterkötter M, Mewes H-W, Schmeitzl C, et al. The Fusarium graminearum genome reveals more secondary metabolite gene clusters and hints of horizontal gene transfer. PLoS One. 2014;9:e110311.
Article
PubMed
PubMed Central
Google Scholar
Timmons JA, Szkop KJ, Gallagher IJ, Keller P, Vollaard N, Gustafsson T, et al. Multiple sources of bias confound functional enrichment analysis of global -omics data. Genome Biol. 2015;16:46–59. BioMed Central.
Article
Google Scholar
Harris LJ, Balcerzak M, Johnston A, Schneiderman D, Ouellet T. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize. Fungal Biol. 2016;120:111–23.
Article
CAS
PubMed
Google Scholar
Bai GH, Desjardins AE, Plattner RD. Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia. 2002;153:91–8.
Article
CAS
PubMed
Google Scholar
Pagani F, Baralle FE. Opinion: Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet. 2004;5:389–96.
Article
CAS
PubMed
Google Scholar
Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet. 2014;15:121–32.
Article
CAS
PubMed
Google Scholar
Walkowiak S, Bonner CT, Wang L, Blackwell B, Rowland O, Subramaniam R. Intraspecies Interaction of Fusarium graminearum Contributes to Reduced Toxin Production and Virulence. Mol Plant Microbe Interact. 2015;28:1256–67.
CAS
PubMed
Google Scholar
Cantu D, Segovia V, MacLean D, Bayles R, Chen X, Kamoun S, et al. Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics. 2013;14:270.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neafsey DE, Barker BM, Sharpton TJ, Stajich JE, Park DJ, Whiston E, et al. Population genomic sequencing of Coccidioides fungi reveals recent hybridization and transposon control. Genome Res. 2010;20:938–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.
Article
PubMed
Google Scholar
Gladieux P, Ropars J, Badouin H, Branca A, Aguileta G, de Vienne DM, et al. Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Mol Ecol. 2014;23:753–73.
Article
PubMed
Google Scholar
Sperschneider J, Gardiner DM, Thatcher LF, Lyons R, Singh KB, Manners JM, et al. Genome-wide analysis in three Fusarium pathogens identifies rapidly evolving chromosomes and genes associated with pathogenicity. Genome Biol Evol. 2015;7:1613–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, et al. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature. 2010;464:367–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012;10:417.
CAS
PubMed
Google Scholar
Croll D, Lendenmann MH, Stewart E, McDonald BA. The impact of recombination hotspots on genome evolution of a fungal plant pathogen. Genetics. 2015;201:1213–28.
Article
PubMed
PubMed Central
Google Scholar
Connolly LR, Smith KM, Freitag M. The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet. 2013;9, e1003916.
Article
PubMed
PubMed Central
Google Scholar
McVicker G, Gordon D, Davis C, Green P. Widespread genomic signatures of natural selection in hominid evolution. PLoS Genet. 2009;5, e1000471.
Article
PubMed
PubMed Central
Google Scholar
Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synonymous mutations frequently act as driver mutations in human cancers. Cell. 2014;156:1324–35.
Article
CAS
PubMed
Google Scholar
Cingolani P, Platts A, le Wang L, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev. 2015;35:57–65.
Article
CAS
PubMed
Google Scholar
Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 2010;330:1540–3.
Article
CAS
PubMed
Google Scholar
Croll D, McDonald BA. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 2012;8:e1002608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galazka JM, Freitag M. Variability of chromosome structure in pathogenic fungi—of ‘ends and odds’. Curr Opin Microbiol. 2014;20:19–26.
Article
CAS
PubMed
Google Scholar
Talas F, Kalih R, Miedaner T. Within-field variation of Fusarium graminearum isolates for aggressiveness and deoxynivalenol production in wheat head blight. Phytopathology. 2012;102:128–34.
Article
CAS
PubMed
Google Scholar
Talas F, Wurschum T, Reif JC, Parzies HK, Miedaner T. Association of single nucleotide polymorphic sites in candidate genes with aggressiveness and deoxynivalenol production in Fusarium graminearum causing wheat head blight. BMC Genet. 2012;13:14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Menke J, Weber J, Broz K, Kistler HC. Cellular development associated with induced mycotoxin synthesis in the filamentous fungus Fusarium graminearum. PLoS One. 2013;8:e63077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kistler HC, Broz K. Cellular compartmentalization of secondary metabolism. Front Microbiol. 2015;6:68. Frontiers Media S.A.
Article
PubMed
PubMed Central
Google Scholar
Pinson-Gadais L, Foulongne-Oriol M, Ponts N, Barreau C, Richard-Forget F. The French Fusarium Collection: a living resource for mycotoxin research. Fungal Genet Rep. 2013;60(Suppl):295.
Google Scholar
Trail F, Common R. Perithecial development by Gibberella zeae: a light microscopy study. Mycologia. 2000;92:130.
Article
Google Scholar
O’Donnell K, Kistler HC, Tacke BK, Casper HH. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A. 2000;97:7905–10.
Article
PubMed
PubMed Central
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Google Scholar
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and Indels. PLoS One. 2012;7:e46688.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, et al. FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res. 2012;40:D675–81.
Article
CAS
PubMed
Google Scholar