Apera spica-venti (L.) P.Beauv. - Checklist View [Internet]. [cited 2016 Aug 15]. Available from: http://www.gbif.org/species/5289642.
Soukup J, Novakova K, Hamouz P, Namestek J. Ecology of silky bent grass (Apera spiva-venti (L.) Beauv.), its importance and control in the Czech Republic. J Plant Dis Prot. 2006;73–80.
Schulz A, Pallutt B, Gerowitt B. Effect of crop rotation and reduced nitrogen fertilisation on Apera spica-venti populations in long-term experiments. Commun Agric Appl Biol Sci. 2011;76:479–83.
CAS
PubMed
Google Scholar
Massa D, Gerhards R. Investigation on herbicide resistance in European silky bent grass (Apera spica-venti) populations. J Plant Dis Prot. 2011;118:31–9.
Article
CAS
Google Scholar
Melander B, Holst N, Jensen PK, Hansen EM, Olesen JE. Apera spica-venti population dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. Weed Res. 2008;48:48–57.
Article
Google Scholar
Warwick SI, Thompson BK, Black LD. Genetic Canadian and European populations of the colonizing weed species Apera spica-venti. New Phytol. 1987;106:301–17.
Article
Google Scholar
International survey of herbicide resistant weeds - [weedscience.org cited 2016 Aug 15]. Available from: http://www.weedscience.org/.
DéLye C, Gardin JAC, Boucansaud K, Chauvel B, Petit C. Non-target-site-based resistance should be the centre of attention for herbicide resistance research: Alopecurus myosuroides as an illustration: Why we need more research on NTSR. Weed Res. 2011;51:433–7.
Article
Google Scholar
Lai Z, Kane NC, Kozik A, Hodgins KA, Dlugosch KM, Barker MS, et al. Genomics of compositae weeds: EST libraries, microarrays, and evidence of introgression. Am J Bot. 2012;99:209–18.
Article
CAS
PubMed
Google Scholar
Estep MC, Gowda BS, Huang K, Timko MP, Bennetzen JL. Genomic characterization for parasitic weeds of the genus by sample sequence analysis. Plant Genome J. 2012;5:30.
Article
CAS
Google Scholar
Lee RM, Tranel PJ. Utilization of DNA microarrays in weed science research. Weed Sci. 2008;56:283–9.
Article
CAS
Google Scholar
Horvath DP, Chao WS, Suttle JC, Thimmapuram J, Anderson JV. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics. 2008;9:536.
Article
PubMed
PubMed Central
Google Scholar
Huang Y-L, Fang X-T, Lu L, Yan Y-B, Chen S-F, Hu L, et al. Transcriptome analysis of an invasive weed Mikania micrantha. Biol Plant. 2012;56:111–6.
Article
CAS
Google Scholar
Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, et al. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol. 2014;166:1186–99.
Article
PubMed
PubMed Central
Google Scholar
Chen S, McElroy JS, Dane F, Peatman E. Optimizing transcriptome assemblies for leaf and seedling by combining multiple assemblies from three de novo assemblers. Plant Genome. 2015;8.
Yang X, Yu X-Y, Li Y-F. De novo assembly and characterization of the barnyardgrass (Echinochloa crusgalli) transcriptome using next-generation pyrosequencing. PLoS ONE. 2013;8:e69168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riggins CW, Peng Y, Stewart CN, Tranel PJ. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Manag Sci. 2010;66:1042–52.
Article
CAS
PubMed
Google Scholar
Leslie T, Baucom RS. De novo assembly and annotation of the transcriptome of the agricultural weed Ipomoea purpurea uncovers gene expression changes associated with herbicide resistance. Genes Genomes Genet. 2014;4:2035–47.
CAS
Google Scholar
Peng Y, Lai Z, Lane T, Rao M, Okada M, Jasieniuk M, et al. De novo genome assembly of the economically-important weed Conyza canadensis using integrated data from multiple sequencing platforms. Plant Physiol. 2014;166:1241–54.
Article
PubMed
PubMed Central
Google Scholar
Yuan JS, Abercrombie LLG, Cao Y, Halfhill MD, Zhou X, Peng Y, et al. Functional genomics analysis of horseweed (Conyza canadensis) with special reference to the evolution of non–target-site glyphosate resistance. Weed Sci. 2010;58:109–17.
Article
CAS
Google Scholar
Peng Y, Abercrombie LL, Yuan JS, Riggins CW, Sammons RD, Tranel PJ, et al. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag Sci. 2010;66:1053–62.
Article
CAS
PubMed
Google Scholar
Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott M-C, et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014;78:865–76.
Article
CAS
PubMed
Google Scholar
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Mol Biol. 2015;87:473–87.
Article
CAS
PubMed
Google Scholar
An J, Shen X, Ma Q, Yang C, Liu S, Chen Y. Transcriptome profiling to discover putative genes associated with paraquat resistance in goosegrass (Eleusine indica L.). PLoS ONE. 2014;9:e99940.
Article
PubMed
PubMed Central
Google Scholar
Chen S, McElroy JS, Dane F, Goertzen LR. Transcriptome assembly and comparison of an allotetraploid weed species, annual bluegrass, with its two diploid progenitor species. Plant Genome. 2016;9:1.
Article
Google Scholar
Apera - GQuery: Global Cross-database NCBI search - [NCBI cited 2016 Aug 15]. Available from: http://www.ncbi.nlm.nih.gov/gquery/?term=Apera.
Délye C, Michel S. “Universal”primers for PCR-sequencing of grass chloroplastic acetyl-CoA carboxylase domains involved in resistance to herbicides. Weed Res. 2005;45:323–30.
Article
Google Scholar
Hamouzová K, Soukup J, JursíK M, Hamouz P, Venclová V, TůMová P. Cross-resistance to three frequently used sulfonylurea herbicides in populations of Apera spica-venti from the Czech Republic: ALS-resistant Apera spica-venti. Weed Res. 2011;51:113–22.
Article
Google Scholar
Massa D, Krenz B, Gerhards R. Target-site resistance to ALS-inhibiting herbicides in Apera spica-venti populations is conferred by documented and previously unknown mutations: Target-site resistance in Apera spica-venti populations. Weed Res. 2011;51:294–303.
Article
CAS
Google Scholar
Schliesky S, Gowik U, Weber APM, Bräutigam A. RNA-Seq assembly – Are we there yet? Front Plant Sci. 2012;3:220.
Article
PubMed
PubMed Central
Google Scholar
Cummins I, Wortley DJ, Sabbadin F, He Z, Coxon CR, Straker HE, et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc Natl Acad Sci. 2013;110:5812–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li G, Wu SG, Yu RX, Cang T, Chen LP, Zhao XP, et al. Identification and expression pattern of a glutathione S-transferase in Echinochloa crus-galli. Zwerger P, editor. Weed Res. 2013;53:314–21.
Article
CAS
Google Scholar
Chen S, Huang X, Yan X, Liang Y, Wang Y, Li X, et al. Transcriptome analysis in sheepgrass (Leymus chinensis): A dominant perennial grass of the Eurasian steppe. PLoS ONE. 2013;8:e67974.
Article
CAS
PubMed
PubMed Central
Google Scholar
He R, Kim M-J, Nelson W, Balbuena TS, Kim R, Kramer R, et al. Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity. Am J Bot. 2012;99:232–47.
Article
CAS
PubMed
Google Scholar
Sablok G, Fu Y, Bobbio V, Laura M, Rotino GL, Bagnaresi P, et al. Fuelling genetic and metabolic exploration of C 3 bioenergy crops through the first reference transcriptome of Arundo donax L. Plant Biotechnol J. 2014;12:554–67.
Article
CAS
PubMed Central
Google Scholar
Farrell JD, Byrne S, Paina C, Asp T. De novo assembly of the perennial ryegrass transcriptome using an RNA-Seq strategy. PLoS ONE. 2014;9:e103567.
Article
PubMed
PubMed Central
Google Scholar
Döring E, Schneider J, Hilu KW, Röser M. Phylogenetic relationships in the Aveneae/Poeae complex (Pooideae, Poaceae). Kew Bull. 2007;62:407–424.
Hamouzová K, Košnarová P, Salava J, Soukup J, Hamouz P. Mechanisms of resistance to acetolactate synthase-inhibiting herbicides in populations of Apera spica-venti from the Czech Republic: Mechanisms of herbicide resistance in Apera spica-venti. Pest Manag Sci. 2014;70:541–8.
Article
PubMed
Google Scholar
Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, et al. The Sorghum bicolor genome and the diversification of grasses. Nature. 2009;457:551–6.
Article
CAS
PubMed
Google Scholar
Requejo R, Tena M. Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity. Phytochemistry. 2005;66:1519–28.
Article
CAS
PubMed
Google Scholar
Ljung K. Sites and Regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell. 2005;17:1090–104.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werck-Reichhart D, Bak S, Paquette S. Cytochromes P450. Arabidopsis Book. 2002;1:e0028.
Article
PubMed
PubMed Central
Google Scholar
Wu Q, Song J, Sun Y, Suo F, Li C, Luo H, et al. Transcript profiles of Panax quinquefolius from flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation. Physiol Plant. 2010;138:134–49.
Article
CAS
PubMed
Google Scholar
Hutvágner G, Barta E, Bánfalvi Z. Isolation and sequence analysis of a cDNA and a related gene for cytochrome P450 proteins from Solanum chacoense. Gene. 1997;188:247–52.
Article
PubMed
Google Scholar
Tyagi N, Dahleen LS, Bregitzer P. Candidate genes within tissue culture regeneration QTL revisited with a linkage map based on transcript-derived markers. Crop Sci. 2010;50:1697.
Article
CAS
Google Scholar
Mekapogu M, Sohn H-B, Kim S-J, Lee Y-Y, Park H-M, Jin Y-I, et al. Effect of light quality on the expression of glycoalkaloid biosynthetic genes contributing to steroidal glycoalkaloid accumulation in potato. Am J Potato Res. 2016;93:264–77.
Article
CAS
Google Scholar
Yogendra KN, Kushalappa AC. Integrated transcriptomics and metabolomics reveal induction of hierarchies of resistance genes in potato against late blight. Funct Plant Biol. 2016;43:766.
Article
CAS
Google Scholar
McGonigle B, Keeler SJ, Lau S-MC, Koeppe MK, O’Keefe DP. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol. 2000;124:1105–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iwakami S, Uchino A, Watanabe H, Yamasue Y, Inamura T. Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species. Pest Manag Sci. 2012;68:1098–106.
Article
CAS
PubMed
Google Scholar
Werck-Reichhart D, Hehn A, Didierjean L. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 2000;5:116–23.
Article
CAS
PubMed
Google Scholar
Didierjean L. Engineering Herbicide Metabolism in Tobacco and Arabidopsis with CYP76B1, a Cytochrome P450 Enzyme from Jerusalem Artichoke. Plant Physiol. 2002;130:179–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Iwakami S, et al. A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiol. 2014;166:1232–40.
Article
PubMed
PubMed Central
Google Scholar
Hu T, Qv X, Xiao G, Huang X. Enhanced tolerance to herbicide of rice plants by over-expression of a glutathione S-transferase. Mol Breed. 2009;24:409–18.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH. A reference-free algorithm for computational normalization of shotgun sequencing data. 2012. arXiv:1203.4802 [q-bio.GN].
Google Scholar
Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci. 2001;98:9748–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.
Article
CAS
PubMed
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.
Article
PubMed
Google Scholar
Zhao Q-Y, Wang Y, Kong Y-M, Luo D, Li X, Hao P. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: a comparative study. BMC Bioinf. 2011;12:S2.
Article
CAS
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
Article
CAS
PubMed
Google Scholar