Sajid M, Rogers J, Rajandream M-A, Berriman M, Haas BJ, LoVerde PT, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460:352–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2756445&tool=pmcentrez&rendertype=abstract.
Article
PubMed
PubMed Central
Google Scholar
Liu F, Zhou Y, Wang ZQ, Lu G, Zheng H, Brindley et al. The Schistosoma japonicum genome reveals unique features of host-parasite interplay. Nature. 2009;460:345–51.
Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. Whole-genome sequence of Schistosoma haematobium. Nat Genet. 2012;44:221–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22246508.
Article
CAS
PubMed
Google Scholar
Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol. 2011;12:R107.
Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, et al. The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet. 2013;45:1168–75. Available from: http://dx.doi.org/10.1038/ng.2757.
Article
CAS
PubMed
Google Scholar
Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, et al. The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013;496:57–63. Available from: http://dx.doi.org/10.1038/nature12031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett HM, Mok HP, Gkrania-Klotsas E, Tsai IJ, Stanley EJ, Antoun NM, et al. The genome of the sparganosis tapeworm Spirometra erinaceieuropaei isolated from the biopsy of a migrating brain lesion. Genome Biol. 2014;15:510. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4265353&tool=pmcentrez&rendertype=abstract.
Yang Y, Clements ACA, Gray DJ, Atkinson J-AM, Williams GM, Barnes TS, et al. Impact of anthropogenic and natural environmental changes on Echinococcus transmission in Ningxia Hui Autonomous Region, the People’s Republic of China [Internet]. Parasit. Vectors. 2012:146. Available from: http://www.parasitesandvectors.com/content/5/1/146.
Craig PS, Budke CM, Schantz PM, Li T, Qiu J, Yang Y, et al. Human Echinococcosis: A Neglected Disease? Trop Med Health. 2007;35:283–92. Available from: http://joi.jlc.jst.go.jp/JST.JSTAGE/tmh/35.283?from=CrossRef.
Article
Google Scholar
Budke CCM, Deplazes P, Torgerson PPR. Global socioeconomic impact of cystic echinococcosis. Emerg Infect Dis. 2006;12:296–303. Available from: http://wwwnc.cdc.gov/eid/article/12/2/05-0499.htm.
Article
PubMed
PubMed Central
Google Scholar
Sultana N, Hashim TK, Jan SY, Khan Z, Malik T, Shah W. Primary cervical hydatid cyst: a rare occurrence. Diagn Pathol. 2012;7:157. Available from: http://www.diagnosticpathology.diagnomx.eu/. Cited 29 Mar 2016.
McManus DP. Current status of the genetics and molecular taxonomy of Echinococcus species. Parasitology. 2013;140:1617–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23750777.
Article
CAS
PubMed
Google Scholar
Nakao M, Yanagida T, Okamoto M, Knapp J, Nkouawa A, Sako Y, et al. State-of-the-art Echinococcus and Taenia: Phylogenetic taxonomy of human-pathogenic tapeworms and its application to molecular diagnosis. Infect Genet Evol. 2010;10:444–52.
Article
CAS
PubMed
Google Scholar
Alvarez Rojas CA, Romig T, Lightowlers MW. Echinococcus granulosus sensu lato genotypes infecting humans--review of current knowledge. Int J Parasitol. 2014;44:9–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24269720.
Article
PubMed
Google Scholar
Cucher MA, Macchiaroli N, Baldi G, Camicia F, Prada L, Maldonado L, et al. Cystic echinococcosis in South America: Systematic review of species and genotypes of Echinococcus granulosus sensu lato in humans and natural domestic hosts. Trop Med Int Heal. 2015;21:166–75.
Article
Google Scholar
Schneider R, Gollackner B, Schindl M, Tucek G, Auer H. Echinococcus canadensis G7 (pig strain): an underestimated cause of cystic echinococcosis in Austria. Am J Trop Med Hyg. 2010;82:871–4. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2861383&tool=pmcentrez&rendertype=abstract.
Article
PubMed
PubMed Central
Google Scholar
Sadjjadi SM, Mikaeili F, Karamian M, Maraghi S, Sadjjadi FS, Shariat-Torbaghan S, et al. Evidence that the Echinococcus granulosus G6 genotype has an affinity for the brain in humans. Int J Parasitol. 2013;43:875–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23891711.
Article
CAS
PubMed
Google Scholar
Rosenzvit MC, Canova SG, Kamenetzky L, Ledesma BA, Guarnera EA. Echinococcus granulosus: cloning and characterization of a tandemly repeated DNA element. Exp Parasitol. 1997;87:65–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9287959.
Article
CAS
PubMed
Google Scholar
Rosenzvit M, Zhang L-H, Kamenetzky L, Canova S, Guarnera E, McManus D. Genetic variation and epidemiology of Echinococcus granulosus in Argentina. Parasitology. 1999;118:523–30.
Article
CAS
PubMed
Google Scholar
Kamenetzky L, Canova SG, Guarnera EA, Rosenzvit MC. Echinococcus granulosus: DNA extraction from germinal layers allows strain determination in fertile and nonfertile hydatid cysts. Exp Parasitol. 2000;95:122–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10910713.
Article
CAS
PubMed
Google Scholar
Kamenetzky L, Muzulin PM, Gutierrez AM, Angel SO, Zaha A, Guarnera EA, et al. High polymorphism in genes encoding antigen B from human infecting strains of Echinococcus granulosus. Parasitology. 2005;131:805–15.
Article
CAS
PubMed
Google Scholar
Muzulin PM, Kamenetzky L, Gutierrez AM, Guarnera EA, Rosenzvit MC. Echinococcus granulosus antigen B gene family: Further studies of strain polymorphism at the genomic and transcriptional levels. Exp Parasitol. 2008;118:156–64.
Article
CAS
PubMed
Google Scholar
Eckert J, Thompson RCA, Lymbery AJ, Pawlowski ZS, Gottstein B, Morgan UM. Further evidence for the occurrence of a distinct strain of Echinococcus granulosus in European pigs. Parasitol Res. 1993;79:42–8.
Article
CAS
PubMed
Google Scholar
Cucher M, Mourglia-Ettlin G, Prada L, Costa H, Kamenetzky L, Poncini C, et al. Echinococcus granulosus pig strain (G7 genotype) protoscoleces did not develop secondary hydatid cysts in mice. Vet Parasitol. 2013;193:185–92.
Article
CAS
PubMed
Google Scholar
Schantz PM, Van den Bossche H, Eckert J. Chemotherapy for larval echinococcosis in animals and humans: report of a workshop. Zeitschrift für Parasitenkd. 1982;67:5–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7041454.
Article
CAS
Google Scholar
Hemphill A, Stadelmann B, Rufener R, Spiliotis M, Boubaker G, Müller J, et al. Treatment of echinococcosis: albendazole and mebendazole--what else? Parasite. 2014;21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25526545.
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012;19:455–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics. 2007;23:1061–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17332020.
Article
CAS
PubMed
Google Scholar
Holt C, Yandell M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinformatics. 2011;12:491. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3280279&tool=pmcentrez&rendertype=abstract.
Article
PubMed
PubMed Central
Google Scholar
Hahn C, Fromm B, Bachmann L. Comparative genomics of flatworms (Platyhelminthes) reveals shared genomic features of ecto- and endoparastic neodermata. Genome Biol Evol. 2014;6:1105–17.
Article
PubMed
PubMed Central
Google Scholar
Macchiaroli N, Cucher M, Zarowiecki M, Maldonado L, Kamenetzky L, Rosenzvit MC. microRNA profiling in the zoonotic parasite Echinococcus canadensis using a high-throughput approach. Parasit Vectors. 2015;8:83. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4326209&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bermudez-Santana C, Attolini C, Kirsten T, Engelhardt J, Prohaska SJ, Steigele S, et al. Genomic organization of eukaryotic tRNAs. BMC Genomics. 2010;11:270. Available from: http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-11-270.
Article
PubMed
PubMed Central
Google Scholar
Smit Arian HR. RepeatModeler - 1.0.8 [Internet]. Institute for Systems Biology. 2008. Available from: http://www.repeatmasker.org/RepeatModeler.html.
Maillard S, Gottstein B, Haag KL, Ma S, Colovic I, Benchikh-Elfegoun MC, et al. The EmsB tandemly repeated multilocus microsatellite: a new tool to investigate genetic diversity of Echinococcus granulosus sensu lato. J Clin Microbiol. 2009;47:3608–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19741078.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bart JM, Abdukader M, Zhang YL, Lin RY, Wang YH, Nakao M, et al. Genotyping of human cystic echinococcosis in Xinjiang, PR China. Parasitology. 2006;133:571–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16836793.
Article
CAS
PubMed
Google Scholar
Marín M, Garat B, Pettersson U, Ehrlich R. Isolation and characterization of a middle repetitive DNA element from Echinococcus granulosus. Mol Biochem Parasitol. 1993;59:335–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8341331.
Article
PubMed
Google Scholar
Koziol U, Radio S, Smircich P, Zarowiecki M, Fernández C, Brehm K. A Novel Terminal-Repeat Retrotransposon in Miniature (TRIM) Is Massively Expressed in Echinococcus multilocularis Stem Cells. Genome Biol Evol. 2015;7:2136–53. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4558846&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bogdanović O, Veenstra GJC. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma. 2009;118:549–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19506892.
Article
PubMed
PubMed Central
Google Scholar
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31:89–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16403636.
Article
CAS
PubMed
Google Scholar
Geyer KK, Rodriguez Lopez CM, Chalmers IW, Munshi SE, Truscott M, Heald J, et al. Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni. Nat Commun. 2011;2:424. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21829186.
Article
PubMed
PubMed Central
Google Scholar
Geyer KK, Chalmers IW, Mackintosh N, Hirst JE, Geoghegan R, Badets M, et al. Cytosine methylation is a conserved epigenetic feature found throughout the phylum Platyhelminthes. BMC Genomics. 2013;14:462. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3710501&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hendrich B, Tweedie S. The methyl-CpG binding domain and the evolving role of DNA methylation in animals. Trends Genet. 2003;19:269–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12711219.
Article
CAS
PubMed
Google Scholar
Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology [Internet]. Nat Publ Group. 2013;38:23–38. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3521964&tool=pmcentrez&rendertype=abstract.
CAS
Google Scholar
Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A. 2006;103:1412–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16432200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medvedeva YA, Fridman MV, Oparina NJ, Malko DB, Ermakova EO, Kulakovskiy IV, et al. Intergenic, gene terminal, and intragenic CpG islands in the human genome. BMC Genomics. 2010;11:48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20085634.
Article
PubMed
PubMed Central
Google Scholar
Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet. 2006;38:626–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16645617.
Article
CAS
PubMed
Google Scholar
Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30:755–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18514006.
Article
CAS
PubMed
Google Scholar
Han L, Su B, Li W-H, Zhao Z. CpG island density and its correlations with genomic features in mammalian genomes. Genome Biol. 2008;9:R79. Available from: http://genomebiology.com/2008/9/5/R79.
Article
PubMed
PubMed Central
Google Scholar
Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F, Asurmendi S, et al. Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int J Parasitol. 2011;41:439–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21219906.
Article
CAS
PubMed
Google Scholar
Mara Rosenzvit, Marcela Cucher, Laura Kamenetzky, Natalia Macchiaroli, Laura Prada FC. MicroRNAs in Endoparasites. In: James C. Johnson, editor. MicroRNA Non-Coding RNA Technol. Dev. Appl. [Internet]. Buenos Aires; 2013. p. 65–92. Available from: https://www.novapublishers.com/catalog/product_info.php?products_id=37973.
Elkayam E, Kuhn C-D, Tocilj A, Haase AD, Greene EM, Hannon GJ, et al. The structure of human argonaute-2 in complex with miR-20a. Cell. 2012;150:100–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22682761.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schürmann N, Trabuco LG, Bender C, Russell RB, Grimm D. Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol. 2013;20:818–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23748378.
Article
PubMed
Google Scholar
Nakao M, Yanagida T, Konyaev S, Lavikainen A, Odnokurtsev VA, Zaikov VA, et al. Mitochondrial phylogeny of the genus Echinococcus (Cestoda: Taeniidae) with emphasis on relationships among Echinococcus canadensis genotypes. Parasitology. 2013;140:1625–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23731519.
Article
CAS
PubMed
Google Scholar
Pan W, Shen Y, Han X, Wang Y, Liu H, Jiang Y, et al. Transcriptome Profiles of the Protoscoleces of Echinococcus granulosus Reveal that Excretory-Secretory Products Are Essential to Metabolic Adaptation. PLoS Negl Trop Dis. 2014;8:1–15.
Article
Google Scholar
Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Mol Biochem Parasitol. 2009;167:1–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nono JK, Pletinckx K, Lutz MB, Brehm K. Excretory/secretory-products of Echinococcus multilocularis larvae induce apoptosis and tolerogenic properties in dendritic cells in vitro. PLoS Negl Trop Dis. 2012;6:e1516.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MW, Donnelly S, Hutchinson AT, To J, Taylor NL, Norton RS, et al. A family of helminth molecules that modulate innate cell responses via molecular mimicry of host antimicrobial peptides. PLoS Pathog. 2011;7:e1002042. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21589904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thivierge K, Cotton S, Schaefer DA, Riggs MW, To J, Lund ME, et al. Cathelicidin-like helminth defence molecules (HDMs): absence of cytotoxic, anti-microbial and anti-protozoan activities imply a specific adaptation to immune modulation. PLoS Negl Trop Dis. 2013;7:e2307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23875042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yi S. Birds do it, bees do it, worms and ciliates do it too: DNA methylation from unexpected corners of the tree of life. 2012.
Google Scholar
Han L, Zhao Z. Contrast features of CpG islands in the promoter and other regions in the dog genome. Genomics. 2009;94:117–24. Available from: http://dx.doi.org/10.1016/j.ygeno.2009.04.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang C, Han L, Su B, Li W-H, Zhao Z. Features and trend of loss of promoter-associated CpG islands in the human and mouse genomes. Mol Biol Evol. 2007;24:1991–2000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17591602.
Article
CAS
PubMed
Google Scholar
Matsuo K, Clay O, Takahashi T, Silke J, Schaffner W. Evidence for erosion of mouse CpG islands during mammalian evolution. Somat Cell Mol Genet. 1993;19:543–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8128314.
Article
CAS
PubMed
Google Scholar
Zhao Z, Jiang C. Methylation-dependent transition rates are dependent on local sequence lengths and genomic regions. Mol Biol Evol. 2007;24:23–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17056644.
Article
PubMed
Google Scholar
Fryxell KJ, Moon W-J. CpG mutation rates in the human genome are highly dependent on local GC content. Mol Biol Evol. 2005;22:650–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15537806.
Article
CAS
PubMed
Google Scholar
Wasik K, Gurtowski J, Zhou X, Ramos OM, Delás MJ, Battistoni G, et al. Genome and transcriptome of the regeneration-competent flatworm, Macrostomum lignano. Proc Natl Acad Sci. 2015;112:201516718. Available from: http://www.pnas.org/content/112/40/12462.abstract.
Article
Google Scholar
Saarma U, Jõgisalu I, Moks E, Varcasia A, Lavikainen A, Oksanen A, et al. A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology. 2009;136:317–28.
Article
CAS
PubMed
Google Scholar
Kamenetzky L, Gutierrez AM, Canova SG, Haag KL, Guarnera EA, Parra A, et al. Several strains of Echinococcus granulosus infect livestock and humans in Argentina. Infect Genet Evol. 2002;2:129–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12797989.
Article
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24695404.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1:18. Available from: http://www.gigasciencejournal.com/content/1/1/18%5Cn and http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3626529&tool=pmcentrez&rendertype=abstract.
Article
PubMed
PubMed Central
Google Scholar
Safonova Y, Bankevich A, Pevzner PA. dipSPAdes: Assembler for Highly Polymorphic Diploid Genomes. J Comput Biol. 2015;22:528–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25734602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai IJ, Otto TD, Berriman M. Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biol. 2010;11:R41. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2884544&tool=pmcentrez&rendertype=abstract.
Article
PubMed
PubMed Central
Google Scholar
Otto TD, Sanders M, Berriman M, Newbold C. Iterative correction of reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics. 2010;26:1704–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics. 2009;25:1968–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2712343&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003;19 Suppl 2:ii215–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14534192.
Article
PubMed
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
Article
PubMed
PubMed Central
Google Scholar
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15713233.
Article
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. Available from: http://genomebiology.com/2013/14/4/R36.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Pachter L, Salzberg SL. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005;33:6494–506. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16314312.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomsadze A, Burns PD, Borodovsky M. Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res. 2014;42:e119. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4150757&tool=pmcentrez&rendertype=abstract.
Article
PubMed
PubMed Central
Google Scholar
Smit AFA, Hubley R GP. RepeatMasker 4.0.6 [Internet]. 2010. Available from: http://www.repeatmasker.org/RMDownload.html.
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9254694.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abrusán G, Grundmann N, DeMester L, Makalowski W. TEclass--a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics. 2009;25:1329–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19349283.
Article
PubMed
Google Scholar
Keibler E, Brent MR. Eval: a software package for analysis of genome annotations. BMC Bioinformatics. 2003;4:50. Available from: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-4-50.
Article
PubMed
PubMed Central
Google Scholar
Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, et al. InterProScan: protein domains identifier. Nucleic Acids Res. 2005;33:W116–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15980438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10802651.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Stoeckert CJJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res. 2003;13:2178–89. Available from: http://genome.cshlp.org/cgi/content/full/13/9/2178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, et al. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr. Protoc. Bioinformatics [Internet]. 2011;Chapter 6:Unit 6.12.1-19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21901743. Cited 31 Mar 2016.
Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, et al. Pfam: clans, web tools and services. Nucleic Acids Res. 2006;34:D247–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16381856.
Article
CAS
PubMed
Google Scholar
Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25950237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24782522.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16301204.
Article
CAS
PubMed
Google Scholar
Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009;37:D387–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18931379.
Article
CAS
PubMed
Google Scholar
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009;30 Suppl 1:S162–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19517507.
Article
PubMed
Google Scholar
Takai D, Jones PA. Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A. 2002;99:3740–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11891299.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19541911.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22388286.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2705234&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools. Bioinformatics. 2011;27:2156–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w 1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.
Article
PubMed
PubMed Central
Google Scholar
Otto TD, Dillon GP, Degrave WS, Berriman M. RATT: Rapid Annotation Transfer Tool. Nucleic Acids Res. 2011;39:1–7.
Article
Google Scholar
Nakao M, Sako Y, Yokoyama N, Fukunaga M, Ito A. Mitochondrial genetic code in cestodes. Mol Biochem Parasitol. 2000;111:415–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11163447.
Article
CAS
PubMed
Google Scholar
Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 1998;23:403–5.
Article
CAS
PubMed
Google Scholar
Nakao M, McManus DP, Schantz PM, Craig PS, Ito A. A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology. 2007;134:713–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17156584.
Article
CAS
PubMed
Google Scholar
Nakao M, Yokoyama N, Sako Y, Fukunaga M, Ito A. The complete mitochondrial DNA sequence of the cestode Echinococcus multilocularis (Cyclophyllidea: Taeniidae). Mitochondrion. 2002;1:497–509. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16120302.
Article
CAS
PubMed
Google Scholar