do Amarante L, Lima JD, Sodek L. Growth and stress conditions cause similar changes in xylem amino acids for different legume species. Environ Exp Bot. 2006;58(1–3):123–9.
Article
CAS
Google Scholar
Waterhouse RN, Smyth AJ, Massonneau A, Prosser IM, Clarkson DT. Molecular cloning and characterisation of asparagine synthetase from Lotus japonicus: dynamics of asparagine synthesis in N-sufficient conditions. Plant Mol Biol. 1996;30(5):883–97.
Article
CAS
PubMed
Google Scholar
Gaufichon L, Reisdorf-Cren M, Rothstein SJ, Chardon F, Suzuki A. Biological functions of asparagine synthetase in plants. Plant Sci. 2010;179(3):141–53.
Article
CAS
Google Scholar
Duff SMG. Asparagine synthetase. In: Mello JPF, editor. Amino acids in higher plants. CAB international; 2015. p. 100–28.
Google Scholar
Lam HM, Hsieh MH, Coruzzi G. Reciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana. Plant J. 1998;16(3):345–53.
Article
CAS
PubMed
Google Scholar
Herrera-Rodríguez MB, Maldonado JM, Pérez-Vicente R. Light and metabolic regulation of HAS1, HAS1.1 and HAS2, three asparagine synthetase genes in Helianthus annuus. Plant Physiol Biochem. 2004;42(6):511–8.
Article
PubMed
Google Scholar
Wong HK, Chan HK, Coruzzi GM, Lam HM. Correlation of ASN2 gene expression with ammonium metabolism in Arabidopsis. Plant Physiol. 2004;134(1):332–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antunes F, Aguilar M, Pineda M, Sodek L. Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (Glycine max). Physiol Plant. 2008;133(4):736–43.
Article
CAS
PubMed
Google Scholar
Gaufichon L, Masclaux-Daubresse C, Tcherkez G, Reisdorf-Cren M, Sakakibara Y, Hase T, Clément G, Avice JC, Grandjean O, Marmagne A, et al. Arabidopsis thaliana ASN2 encoding asparagine synthetase is involved in the control of nitrogen assimilation and export during vegetative growth. Plant Cell Environ. 2013;36(2):328–42.
Article
CAS
PubMed
Google Scholar
Gaufichon L, Rothstein SJ, Suzuki A. Asparagine metabolic pathways in Arabidopsis. Plant Cell Physiol. 2016;57(4):675–89.
Article
CAS
PubMed
Google Scholar
Ohashi M, Ishiyama K, Kojima S, Konishi N, Nakano K, Kanno K, Hayakawa T, Yamaya T. Asparagine synthetase1, but not asparagine synthetase2, is responsible for the biosynthesis of asparagine following the supply of ammonium to rice roots. Plant Cell Physiol. 2015;56(4):769–78.
Article
CAS
PubMed
Google Scholar
Cánovas FM, Ávila C, Cantón FR, Cañas RA, De la Torre F. Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot. 2007;58(9):2307–18.
Article
PubMed
Google Scholar
Cañas RA, de la Torre F, Cánovas FM, Cantón FR. Coordination of PsAS1 and PsASPG expression controls timing of re-allocated N utilization in hypocotyls of pine seedlings. Planta. 2007;225(5):1205–19.
Article
PubMed
Google Scholar
Credali A, Díaz-Quintana A, García-Calderón M, De la Rosa MA, Márquez AJ, Vega JM. Structural analysis of K+-dependence in L-asparaginases from Lotus japonicus. Planta. 2011;234(1):109–22.
Article
CAS
PubMed
Google Scholar
Credali A, García-Calderón M, Dam S, Perry J, Díaz-Quintana A, Parniske M, Wang TL, Stougaard J, Vega JM, Márquez AJ. The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus. Plant Cell Physiol. 2013;54(1):107–18.
Article
CAS
PubMed
Google Scholar
Zhang Q, Lee J, Pandurangan S, Clarke M, Pajak A, Marsolais F. Characterization of Arabidopsis serine:glyoxylate aminotransferase, AGT1, as an asparagine aminotransferase. Phytochemistry. 2013;85:30–5.
Article
CAS
PubMed
Google Scholar
Sodek L, Lea PJ, Miflin BJ. Distribution and properties of a potassium-dependent asparaginase isolated from developing seeds of Pisum sativum and other plants. Plant Physiol. 1980;65(1):22–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruneau L, Chapman R, Marsolais F. Co-occurrence of both L-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent L-asparaginase. Planta. 2006;224(3):668–79.
Article
CAS
PubMed
Google Scholar
Bejger M, Imiolczyk B, Clavel D, Gilski M, Pajak A, Marsolais F, Jakolski M. Na+/K+ exchange switches the catalytic apparatus of potassium-dependent L-asparaginase. Acta Crystallogr D Biol Cristallogr. 2014;D70:1854–72.
Article
Google Scholar
Ireland RJ, Joy KW. Subcellular localization of asparaginase and asparagine aminotransferase in Pisum sativum leaves. Plant Physiol. 1983a;72(4):1127–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ireland RJ, Joy KW. Purification and properties of an asparagine aminotransferase from Pisum sativum leaves. Arch Biochem Biophys. 1983b;223(1):291–6.
Article
CAS
PubMed
Google Scholar
Murray AJS, Blackwell RD, Joy KW, Lea PJ, Photorespiratory N. Donors, aminotransferase specificity and photosynthesis in a mutant of barley deficient in serine:glyoxylate aminotransferase activity. Planta. 1987;172(1):106–13.
Article
CAS
PubMed
Google Scholar
Havir EA, McHale NAA. Mutant of Nicotiana sylvestris lacking serine:glyoxylate aminotransferase: substrate specificity of the enzyme and fate of [2-14C]glycolate in plants with genetically altered enzyme levels. Plant Physiol. 1988;87(4):806–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bauwe H, Hagemann M, Fernie AR. Photorespiration: players, partners and origin. Trends Plant Sci. 2010;15(6):330–6.
Article
CAS
PubMed
Google Scholar
Zhang Q, Marsolais F. Identification and characterization of omega-amidase as an enzyme metabolically linked to asparagine transamination in Arabidopsis. Phytochemistry. 2014;99:36–43.
Article
CAS
PubMed
Google Scholar
Ta TC, Joy KW, Ireland RJ. Role of asparagine in the photorespiratory nitrogen metabolism of pea leaves. Plant Physiol. 1985;78(2):334–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Leary B, Preston GM, Sweetlove LJ. Increased β-cyanoalanine nitrilase activity improves cyanide tolerance and assimilation in Arabidopsis. Mol Plant. 2014;7(1):231–43.
Article
PubMed
Google Scholar
Betti M, Arcondéguy T, Márquez AJ. Molecular analysis of two mutants from Lotus japonicus deficient in plastidic glutamine synthetase: functional properties of purified GLN2 enzymes. Planta. 2006;224(5):1068–79.
Article
CAS
PubMed
Google Scholar
Betti M, García-Calderón M, Pérez-Delgado CM, Credali A. Pal’ove-Balang P, Estivill G, Repcak M, Vega JM, Galván F, Márquez AJ. Reassimilation of ammonium in Lotus japonicus. J Exp Bot. 2014;65(19):5557–66.
Article
CAS
PubMed
Google Scholar
Handberg K, Stougaard J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 1992;2(4):487–96.
Article
Google Scholar
García-Calderón M, Chiurazzi M, Espuny MR, Márquez AJ. Photorespiratory metabolism and nodule function: behavior of Lotus japonicus mutants deficient in plastid glutamine synthetase. Mol Plant-Microbe Interact. 2012;25(2):211–9.
Article
PubMed
Google Scholar
Orea A, Pajuelo P, Pajuelo E, Quidiello C, Romero JM, Márquez AJ. Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase. Physiol Plant. 2002;115(3):352–61.
Article
CAS
PubMed
Google Scholar
Márquez AJ, Betti M, García-Calderón M, Pal’ove-Balang P, Díaz P, Monza J. Nitrate assimilation in Lotus japonicus. J Exp Bot. 2005;56(417):1741–9.
Article
PubMed
Google Scholar
Sánchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Krämer U, Kopka J, Udvardi MK. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J. 2008;53(6):973–87.
Article
PubMed
Google Scholar
Pérez-Delgado CM, Moyano TC, García-Calderón M, Canales J, Gutiérrez RA, Márquez AJ, Betti M. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism. J Exp Bot. 2016;67(10):3095–108.
Article
PubMed
PubMed Central
Google Scholar
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reid DE, Heckmann AB, Novák O, Kelly S, Stougaard JCYTOKININOXIDASE. DEHYDROGENASE3 maintains cytokinin homeostasis during root and nodule development in Lotus japonicus. Plant Physiol. 2016;170(2):1060–74.
Article
CAS
PubMed
Google Scholar
Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J. TM4 microarray software suite. Methods Enzymol. 2006;411:134–93.
Article
CAS
PubMed
Google Scholar
Pérez-Delgado CM, García-Calderón M, Sánchez DH, Udvardi MK, Kopka J, Márquez AJ, Betti M. Transcriptomic and metabolic changes associated with photorespiratory ammonium accumulation in the model legume Lotus japonicus. Plant Physiol. 2013;162(4):1834–48.
Article
PubMed
PubMed Central
Google Scholar
Høgslund N, Radutoiu S, Krussell L, Voroshilova V, Hannah MA, Goffard N, Sanchez DH, Lippold F, Ott T, Sato S, et al. Dissection of symbiosis and organ development by integrated transcriptome analysis of Lotus japonicus mutant and wild-type plants. PLoS One. 2009;4(8):e6556.
Article
PubMed
PubMed Central
Google Scholar
Díaz P, Betti M, Sánchez DH, Udvardi MK, Monza J, Márquez AJ. Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol. 2010;188(4):1001–13.
Article
PubMed
Google Scholar
Sánchez DH, Pieckenstain FL, Szymanski J, Erban A, Bromke M, Hannah MA, Kraemer U, Kopka J, Udvardi MK. Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. PLoS One. 2011;6(2):e17094.
Article
PubMed
PubMed Central
Google Scholar
Betti M, Pérez-Delgado C, García-Calderón M, Díaz P, Monza J, Márquez AJ. Cellular stress following water deprivation in the model legume Lotus japonicus. Cell. 2012;1(4):1089–06.
Article
CAS
Google Scholar
ArrayExpress database. https://www.ebi.ac.uk/arrayexpress/ Accessed.
Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.
Article
CAS
PubMed
Google Scholar
Shamir R, Maron-Katz A, Tanay A, Linhart C, Steinfeld I, Sharan R, Shiloh Y, Elkon R. EXPANDER−an integrative program suite for microarray data analysis. BMC Bioinformatics. 2005;6:232.
Article
PubMed
PubMed Central
Google Scholar
Ulitsky I, Maron-Katz A, Shavit S, Sagir D, Linhart C, Elkon R, Tanay A, Sharan R, Shiloh Y, Shamir R. Expander: from expression microarrays to networks and functions. Nat Protoc. 2010;5(2):303–22.
Article
CAS
PubMed
Google Scholar
Kazusa. www.kazusa.or.jp/lotus/ Accessed.
Prell J, Poole P. Metabolic changes of rhizobia in legume nodules. Trends Microbiol. 2006;14(4):161–8.
Article
CAS
PubMed
Google Scholar
Lam HM, Coschigani KT, Oliveira IC, Melo-Oliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 1996;47:569–93.
Article
CAS
PubMed
Google Scholar
Modde K, Timm S, Florian A, Michl K, Fernie AR, Bauwe H. High serine:glyoxylate aminotransferase activity lowers leaf daytime serine levels, inducing the phosphoserine pathway in Arabidopsis. J Exp Bot. 2017;68(3):643–56.
PubMed
Google Scholar
Pérez-Delgado CM, García-Calderón M, Márquez AJ, Betti M. Reassimilation of photorespiratory ammonium in Lotus japonicus plants deficient in plastidic glutamine synthetase. PLoS One. 2015;10(6):e0130438.
Article
PubMed
PubMed Central
Google Scholar
Igarashi D, Ishizaki T, Totsuka K, Ohsumi C. ASN2 is a key enzyme in asparagine biosynthesis under ammonium sufficient conditions. Plant Biotechnol. 2009;26(1):153–9.
Article
CAS
Google Scholar