Ferreira AM, Bislev SL, Bendixen E, Almeida AM. The mammary gland in domestic ruminants: a systems biology perspective. J Proteome. 2013;94:110–23.
Article
CAS
Google Scholar
Sejrsen K, Hvelplund T, Nielsen MO. Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress. The Netherlands: Wageningen Academic Pub; 2006.
Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9.
Article
CAS
PubMed
Google Scholar
Mörén L, Bergenheim AT, Ghasimi S, Brännström T, Johansson M, Antti H. Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Meta. 2015;5(3):502–20.
Google Scholar
Ryan D, Newnham ED, Prenzler PD, Gibson PR. Metabolomics as a tool for diagnosis and monitoring in coeliac disease. Metabolomics. 2015;11(4):980–90.
Article
CAS
Google Scholar
Sun H, Wang B, Wang J, Liu H, Liu J. Biomarker and pathway analyses of urine metabolomics in dairy cows when corn stover replaces alfalfa hay. J Anim Sci Biotechnol. 2016;7(1):49.
Article
PubMed
PubMed Central
Google Scholar
Menni C, Graham D, Kastenmüller G, Alharbi NH, Alsanosi SM, McBride M, Mangino M, Titcombe P, Shin S-Y, Psatha M. Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension. 2015;66(2):422–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saleem F, Ametaj B, Bouatra S, Mandal R, Zebeli Q, Dunn S, Wishart D. A metabolomics approach to uncover the effects of grain diets on rumen health in dairy cows. J Dairy Sci. 2012;95(11):6606–23.
Article
CAS
PubMed
Google Scholar
Tian H, Zheng N, Wang W, Cheng J, Li S, Zhang Y, Wang J. Integrated Metabolomics study of the milk of heat-stressed lactating dairy cows. Sci Rep. 2016;6:24208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Q, Tan Y, Yin P, Ye G, Gao P, Lu X, Wang H, Xu G. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013;73(16):4992–5002.
Article
CAS
PubMed
Google Scholar
Rawson P, Stockum C, Peng L, Manivannan B, Lehnert K, Ward HE, Berry SD, Davis SR, Snell RG, McLauchlan D. Metabolic proteomics of the liver and mammary gland during lactation. J Proteome. 2012;75(14):4429–35.
Article
CAS
Google Scholar
Li Z, Liu H, Jin X, Lo L, Liu J. Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics. 2012;13(1):1.
Article
Google Scholar
Wang B, Mao S, Yang H, Wu Y, Wang J, Li S, Shen Z, Liu J. Effects of alfalfa and cereal straw as a forage source on nutrient digestibility and lactation performance in lactating dairy cows. J Dairy Sci. 2014;97(12):7706–15.
Article
CAS
PubMed
Google Scholar
Apelo SA, Singer L, Lin X, McGilliard M, St-Pierre N, Hanigan M. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue. J Dairy Sci. 2014;97(2):1047–56.
Article
Google Scholar
Shen J, Song L, Sun H, Wang B, Chai Z, Chacher B, Liu J. Effects of corn and soybean meal types on rumen fermentation, nitrogen metabolism and productivity in dairy cows. Asian austral. J Anim Sci. 2015;28(3):351.
CAS
Google Scholar
Sun HZ, Wang DM, Wang B, Wang JK, Liu HY, Guan le L, Liu JX. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality. J Proteome Res. 2015;14(2):1287–98.
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acid Res. 2015;43(W1):W251–W57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xia J, Wishart DS. MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acid Res. 2010;38(suppl 2):W71–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbasi A, Hossain L, Leydesdorff L. Betweenness centrality as a driver of preferential attachment in the evolution of research collaboration networks. J Inf Secur. 2012;6(3):403–12.
Google Scholar
Xia J, Wishart DS. MetPA: a web-based metabolomics tool for pathway analysis and visualization. Bioinformatics. 2010;26(18):2342–4.
Article
CAS
PubMed
Google Scholar
Wang D, Liang G, Wang B, Sun H, Liu J, Guan LL. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization. Sci Rep. 2016;6:21194.
Article
CAS
PubMed
PubMed Central
Google Scholar
Drackley J, Donkin S, Reynolds C. Major advances in fundamental dairy cattle nutrition. J Dairy Sci. 2006;89(4):1324–36.
Article
CAS
PubMed
Google Scholar
Garnsworthy PC: Nutrition and lactation in the dairy cow: Elsevier; 2013.
Google Scholar
Loor JJ, Bionaz M, Invernizzi G. Systems biology and animal nutrition: insights from the dairy cow during growth and the lactation cycle. Syst biol. Livest Sci. 2011:215–46.
Mao SY, Huo WJ, Zhu WY. Microbiome–metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ Microbiol. 2016;18(2):525–41.
Article
CAS
PubMed
Google Scholar
Kenéz Á, Dänicke S, Rolle-Kampczyk U, von Bergen M, Huber K. A metabolomics approach to characterize phenotypes of metabolic transition from late pregnancy to early lactation in dairy cows. Metabolomics. 2016;12(11):165.
Article
Google Scholar
Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Yang J, Zhao S, Li S, Guo T, Zang C. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J Proteome. 2016;136:174–82.
Article
CAS
Google Scholar
Wang X, Zhang A, Han Y, Wang P, Sun H, Song G, Dong T, Yuan Y, Yuan X, Zhang M. Urine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver disease. Mol Cell Proteomics. 2012;11(8):370–80.
Article
PubMed
PubMed Central
Google Scholar
Mercimek-Mahmutoglu S, Stoeckler-Ipsiroglu S, Adami A, Appleton R, Araújo HC, Duran M, Ensenauer R, Fernandez-Alvarez E, Garcia P, Grolik C. GAMT deficiency features, treatment, and outcome in an inborn error of creatine synthesis. Neurol. 2006;67(3):480–4.
Article
CAS
Google Scholar
Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev. 2000;80(3):1107–213.
CAS
PubMed
Google Scholar
Poortmans JR, Kumps A, Duez P, Fofonka A, Carpentier A, Francaux M. Effect of oral creatine supplementation on urinary methylamine, formaldehyde, and formate. Med Sci Sport Exer. 2005;37(10):1717.
Article
CAS
Google Scholar
Schulze A. Creatine deficiency syndromes. Mol Cell Biochem. 2003;244(1-2):143–50.
Article
CAS
PubMed
Google Scholar
Wang Y, Gao Y, Xia C, Zhang H, Qian W, Cao Y. Pathway analysis of plasma different metabolites for dairy cow ketosis. Ital J Anim Sci. 2016;15(3):545–51.
Article
CAS
Google Scholar
Xu C, Xia C, Sun Y, Xiao X, Wang G, Fan Z, Shu S, Zhang H, Xu C, Yang W. Metabolic profiles using 1H-NMR spectroscopy in postpartum dairy cows with ovarian inactivity. Theriogenology. 2016;86(6):1475–81.
Article
CAS
PubMed
Google Scholar
Tian H, Wang W, Zheng N, Cheng J, Li S, Zhang Y, Wang J. Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. J Proteome. 2015;125:17–28.
Article
CAS
Google Scholar
Nelson DL, Lehninger AL, Cox MM: Lehninger principles of biochemistry: Macmillan; 2008.
Google Scholar
Aschenbach JR, Kristensen NB, Donkin SS, Hammon HM, Penner GB. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life. 2010;62(12):869–77.
Article
CAS
PubMed
Google Scholar
Denton R, Halestrap A. Regulation of pyruvate metabolism in mammalian tissues. Essays Biochem. 1978;15:37–77.
Google Scholar
Zhang Q, Koser SL, Bequette BJ, Donkin SS. Effect of propionate on mRNA expression of key genes for gluconeogenesis in liver of dairy cattle. J Dairy Sci. 2015;98(12):8698–709.
Article
CAS
PubMed
Google Scholar
Jeyanathan J, Martin C, Morgavi D. The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal. 2014;8(02):250–61.
Article
CAS
PubMed
Google Scholar
Grassian AR, Parker SJ, Davidson SM, Divakaruni AS, Green CR, Zhang X, Slocum KL, Pu M, Lin F, Vickers C. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 2014;74(12):3317–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Antunes-Fernandes E, van Gastelen S, Dijkstra J, Hettinga K, Vervoort J. Milk metabolome relates enteric methane emission to milk synthesis and energy metabolism pathways. J Dairy Sci. 2016;99(8):6251–62.
Article
CAS
PubMed
Google Scholar
Bravo D, Wall E. The rumen and beyond: nutritional physiology of the modern dairy cow1. J Dairy Sci. 2016;99(6):4939–40.
Article
CAS
PubMed
Google Scholar
Doran AG, Berry DP, Creevey CJ. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle. BMC Genomics. 2014;15(1):1.
Article
Google Scholar
Piccioli-Cappelli F, Loor J, Seal C, Minuti A, Trevisi E. Effect of dietary starch level and high rumen-undegradable protein on endocrine-metabolic status, milk yield, and milk composition in dairy cows during early and late lactation. J Dairy Sci. 2014;97(12):7788–803.
Article
CAS
PubMed
Google Scholar
Palma M, Hernández-Castellano LE, Castro N, Arguëllo A, Capote J, Matzapetakis M, de Almeida AM. NMR-metabolomics profiling of mammary gland secretory tissue and milk serum in two goat breeds with different levels of tolerance to seasonal weight loss. Mol BioSyst. 2016;12:2094–107.
Article
CAS
PubMed
Google Scholar
Pisano MB, Scano P, Murgia A, Cosentino S, Caboni P. Metabolomics and microbiological profile of Italian mozzarella cheese produced with buffalo and cow milk. Food Chem. 2016;192:618–24.
Article
CAS
PubMed
Google Scholar
Scano P, Murgia A, Demuru M, Consonni R, Caboni P. Metabolite profiles of formula milk compared to breast milk. Food Res Int. 2016;87:76–82.
Article
CAS
Google Scholar
Curtasu M, Theil P, Hedemann M. Metabolomic profiles of colostrum and milk from lactating sows. J Anim Sci. 2016;94(7supplement3):272–5.
Article
CAS
Google Scholar
Schaafsma G. Lactose and lactose derivatives as bioactive ingredients in human nutrition. Int Dairy J. 2008;18(5):458–65.
Article
CAS
Google Scholar
Krebs HA, Johnson W. The role of citric acid in intermediate metabolism in animal tissues. FEBS Lett. 1980;117(S1):2–10.
Article
Google Scholar
Saidi B, Warthesen J. Analysis and stability of orotic acid in milk. J Dairy Sci. 1989;72(11):2900–5.
Article
CAS
Google Scholar
Loeffler M, Carrey EA, Zameitat E. Orotic acid, more than just an intermediate of Pyrimidine de novo synthesis. J Genet Genomics. 2015;42(5):207–19.
Article
Google Scholar
Chen C-C, Stairs DB, Boxer RB, Belka GK, Horseman ND, Alvarez JV, Chodosh LA. Autocrine prolactin induced by the Pten–Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Genes Dev. 2012;26(19):2154–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malloy CR, Sherry AD, Jeffrey F. Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. J Biol Chem. 1988;263(15):6964–71.
CAS
PubMed
Google Scholar
He W. Miao FJ-P, Lin DC-H, Schwandner RT, Wang Z, Gao J, Chen J-L, Tian H, Ling L: citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429(6988):188–93.
Article
CAS
PubMed
Google Scholar
Akers RM. Lactation and the mammary gland. Ames: Wiley; 2016.
Kannan N, Nguyen LV, Makarem M, Dong Y, Shih K, Eirew P, Raouf A, Emerman JT, Eaves CJ. Glutathione-dependent and-independent oxidative stress-control mechanisms distinguish normal human mammary epithelial cell subsets. P Natl Acad Scd USA. 2014;111(21):7789–94.
Article
CAS
Google Scholar
Shennan D, McNeillie S, Curran D. The effect of a hyposmotic shock on amino acid efflux from lactating rat mammary tissue: stimulation of taurine and glycine efflux via a pathway distinct from anion exchange and volume-activated anion channels. Exp Physiol. 1994;79(5):797–808.
Article
CAS
PubMed
Google Scholar
Khan AP, Rajendiran TM, Bushra A, Asangani IA, Athanikar JN, Yocum AK, Mehra R, Siddiqui J, Palapattu G, Wei JT. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15(5):491–IN13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ostojic SM. Advanced physiological roles of guanidinoacetic acid. Eur J Nutr. 2015;54(8):1211–5.
Article
CAS
PubMed
Google Scholar