Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol. 2010;91:29–66.
Article
CAS
PubMed
Google Scholar
Lidon FJC, Teixeira M, Ramalho JC. Decay of the chloroplast pool of ascorbate switches on the oxidative burst in UV-B-irradiated rice. J Agron Crop Sci. 2012;198:130–44.
Article
Google Scholar
Pitzschke A, Forzani C, Hirt H. Reactive oxygen species signaling in plants. Antioxid Redox Signal. 2006;8:1757–64.
Article
CAS
PubMed
Google Scholar
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–30.
Article
CAS
PubMed
Google Scholar
Jenkins GI. Signal transduction in responses to UVB radiation. Annu Rev Plant Biol. 2009;60:407–31.
Article
CAS
PubMed
Google Scholar
Brosche M, Strid A. Molecular events following perception of ultraviolet-B radiation by plants: UVB induced signal transduction pathways and changes in gene expression. Physiol Plant. 2003;117:1–10.
Article
CAS
Google Scholar
Ballare CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF. Effects of solar ultraviolet radiation on terrestrial ecosystems. patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci. 2011;10:226–41.
Article
CAS
PubMed
Google Scholar
Li FR, Peng SL, Chen BM, Hou YP. A meta-analysis of the responses of woody and herbaceous plants to elevated ultraviolet-B radiation. Acta Oecol. 2010;36:1–9.
Article
Google Scholar
Deckmyn G, Gaeyenberghs E, Ceulemans R. Reduced UV-B in greenhouses decreases white clover response to enhance CO2. Environ Exp Bot. 2001;46(2):109–17.
Article
CAS
Google Scholar
Rizzini L, Favory JJ, Cloix C, Faggionato D, O’Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011;332(6025):103–6.
Article
CAS
PubMed
Google Scholar
Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ. Plant UVR8 photoreceptor senses UVB by tryptophan-mediated disruption of cross-dimer salt bridges. Science. 2012;335:1492–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu D, Hu Q, Yan Z, Chen W, Yan C. Structural basis of ultraviolet-B perception by UVR8. Nature. 2012;484:214–9.
Article
PubMed
Google Scholar
Heijde M, Ulm R. UVB photoreceptor-mediated signaling in plants. Trends Plant Sci. 2012;17:230–7.
Article
CAS
PubMed
Google Scholar
Yi C, Deng XW. COP1-from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 2005;15:618–25.
Article
CAS
PubMed
Google Scholar
Saijo Y, Sullivan JA, Wang H, Yang J, Shen Y. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 2003;17:2642–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osterlund MT, Hardtke CS, Wei N, Deng XW. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature. 2000;405:462–6.
Article
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.
Article
CAS
PubMed
Google Scholar
Ramachandran V, Chen X. Small RNA metabolism in Arabidopsis. Trends Plant Sci. 2008;13:368–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell. 2009;136:669–87.
Article
CAS
PubMed
Google Scholar
Chen X. MicroRNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci U S A. 2004;101:12753–8.
Article
Google Scholar
Sunkar R, Li Y, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203.
Article
CAS
PubMed
Google Scholar
Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abotic stress responses and nutrient deprivation. Trends Plant Sci. 2007;12:301–9.
Article
CAS
PubMed
Google Scholar
Pérez-Quintero AL, Quintero A, Urrego O, Vanegas P, López C. Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biol. 2012;12:1–11.
Article
Google Scholar
Wang Z, Niu L. Peach industry status and recommendations. Fruit Growers’ Friend (in Chinese). 2012;11:37–8.
Google Scholar
Shulaev V, Korban SS, Sosinski B, Abbott AG, Aldwinckle HS, Folta KM, Lezzoni A, Main D, Arus P, Dandekar AM, et al. Multiple models for Rosaceae genomic. Plant Physiol. 2008;147(3):985–1003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F, et al. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet. 2013;45(5):487–94.
Article
CAS
PubMed
Google Scholar
Zhu H, Xia R, Zhao BY, An YQ, Dardick DC, Callahan MA, Liu ZR. Unique expression, processing regulation, and regulatory network of peach (prunus persica) miRNAs. BMC Plant Biol. 2012;12(1):149.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao Z, Luo X, Shi T, Cai B, Zhang Z, Cheng ZM. Identification and validation of potential conserved microRNAs and their targets in peach (Prunus persica). Mol Cells. 2012;34:239–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo X, Gao Z, Shi T, Cheng Z, Zhang Z, Ni ZJ. Identification of miRNAs and their target genes in peach (Prunus persica L.) using high-throughput sequencing and degradome analysis. PLoS One. 2013;8(11):e79090.
Article
PubMed
PubMed Central
Google Scholar
Reig G, Alegre S, Gatius F, Iglesias I. Adaptability of peach cultivars [Prunus persica (L.) Batsch] to the climatic conditions of the Ebro Valley, with special focus on fruit quality. Sci Hortic-Amsterdam. 2015;190:149–60.
Article
Google Scholar
Byrne DH. Peach breeding trends: a worldwide perspective. Acta Hort. 2002;592:49–59.
Article
Google Scholar
Horvath DP, Anderson JV, Chao WS, Foley ME. Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci. 2003;8(11):534–40.
Article
CAS
PubMed
Google Scholar
Cirilli M, Bassi D, Ciacciulli A. Sugars in peach fruit: a breeding perspective. Hortic Res. 2016;2:15067.
Article
Google Scholar
Crisosto C, Costa G. The peach: botany, production, and uses. In: Layne DR, Bassi D, editors. . Cambridge: CAB International; 2008. p. 536–49.
Chapter
Google Scholar
Yu N, Li D, Tan Q, Zhang H, Gao D. Effect of UVB radiation on assimilate translocation and distribution in fruiting shoot of protected peach. Chin J Appl Environment Biol. 2013;19(1):157–63.
Article
CAS
Google Scholar
Yu N, Tan Q, Tan Y, Zhang H, Gao D. Effects of UVB radiation on 15N urea absorption, utilization and distribution in fruiting shoot of peach under protected culture. Plant Nutrition Fertilizer Sci. 2012;18(2):491–8.
CAS
Google Scholar
Luo X, Shi T, Sun H. Selection of suitable inner reference genes for normalization of microRNAs expression response to abiotic stresses by RT-qPCR in leaves, flowers and young stems of peach. Sci Hortic-Amsterdam. 2014;165(3):281–7.
Article
CAS
Google Scholar
Gao D. The current conditions and developing tendency of protected cultivation of fruit trees in China. Deciduous Fruits (in Chinese). 2016;48(1):1–4.
Google Scholar
Li ZY, Gao DS, Qian S, Zhang JH, Li ZJ, Wang C. Effects of different light environments on the fruit quality of peach in greenhouse. J Anhui Agri Sci. 2009;37(21):9933V9934–63.
Google Scholar
Brown BA, Jenkins GI. UV-B signaling pathways with different fluence-rate response profiles are distinguished in mature Arabidopsis leaf tissue by requirement for UVR8, HY5, and HYH. Plant Physiol. 2008;146:576–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parul P, Samiksha S, Rachana S. Changing scenario in plant UV-B research: UV-B from a generic stressor to a specific regulator. J Photoch Photobio B. 2015;153:334–43.
Article
Google Scholar
Ulm R, Nagy F. Signalling and gene regulation in response to ultraviolet light. Curr Opin Plant Biol. 2005;8:477–82.
Article
CAS
PubMed
Google Scholar
Hideg E, Jansen MA, Strid A. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci. 2013;18:107–15.
Article
CAS
PubMed
Google Scholar
Chen XD. The effects of ultraviolet-B radiation intensity and different plasic film on development characteristics of peach flower and fruit in protected culture. Shandong Agriculture University, Horticulture and Engineering college: Master Thesis; 2009.
Google Scholar
Hectors K, Prinsen E, De CW, Jansen MAK, Guisez Y. Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation show specific changes in morphology and gene expression in the absence of stress symptoms. New Phytol. 2007;175:255–70.
Article
CAS
PubMed
Google Scholar
Wang B, Sun Y, Song N. Identification of UVB-induced microRNAs in wheat. Genet Mol Res. 2013;12(4):4213–21.
Article
CAS
PubMed
Google Scholar
Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ. Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet. 2006;38:721–5.
Article
CAS
PubMed
Google Scholar
Chen L, Ren Y, Zhang Y, Xu J, Sun F, Zhang Z, Wang Y. Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa. Gene. 2012;504:160–5.
Article
CAS
PubMed
Google Scholar
Chen L, Zhang Y, Ren Y, Xu J, Zhang Z, Wang Y. Genome-wide identification of cold-responsive and new microRNAs in Populus tomentosa by high-throughput sequencing. Biochem Biophys Res Commun. 2012;417:892–6.
Article
CAS
PubMed
Google Scholar
Li B, Duan H, Li J, Deng X, Yin W. Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol. 2013;81:525–39.
Article
CAS
PubMed
Google Scholar
Ren Y, Chen L, Zhang Y, Kang X, Zhang Z, Wang Y. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress. Funct Integr Genomics. 2012;12:327–39.
Article
CAS
PubMed
Google Scholar
Wang L, Mai YX, Zhang YC, Luo Q, Yang HQ. MicroRNA171c-targeted SCL6-II, SCL6-III, and SCL6-IV genes regulate shoot branching in Arabidopsis. Mol Plant. 2010;3:794–806.
Article
PubMed
Google Scholar
Curaba J, Talbot M, Li Z, Helliwell C. Over-expression of microRNA171 affects phase transitions and floral meristem determinancy in barley. BMC Plant Biol. 2013;13:6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fan T, Li X, Yang W, Xia K, Ouyang J, Zhang M. Rice osa-mir171c mediates phase change from vegetative to reproductive development and shoot apical meristem maintenance by repressin four OsHAM transcription factors. PLoS One. 2015;10(5):e0125833.
Article
PubMed
PubMed Central
Google Scholar
Huang W, Peng S, Xian Z, Lin D, Hu G, Yang L, Ren M, Li Z. Overexpression of a tomato mir171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis. Plant Biotechnol J. 2017;15(4):472–88.
Article
CAS
PubMed
Google Scholar
Huang W, Xian Z, Kang X, Tang N, Li Z. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol. 2015;15:209.
Article
PubMed
PubMed Central
Google Scholar
Ma Z, Hu X, Cai W, Huang W, Xhou X, Luo Q, Yang H, Wang J, Huang J. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genet. 2014;10(8):E1004519.
Article
PubMed
PubMed Central
Google Scholar
Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A. Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics. 2012;13:481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. Front Plant Sci. 2014;5:474.
PubMed
PubMed Central
Google Scholar
Kroger M, Meister K, Kava R. Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci F. 2006;5(2):35–47.
Article
CAS
Google Scholar
Guo X, Li S, Liu G, Fu Z, Li S. Seasonal changes in carbohydrate content and reated enzyme activity in fruit and leaves of “Yanfengyihao” peach variety. J Fruit Science (in Chinese). 2004;21(3):196–200.
Google Scholar
Ding D, Li W, Han M, Wang Y, Fu Z, Wang B, Tang J. Identification and characterization of maize microRNAs involved in developing ears. Plant Biol. 2013;16(1):9–15.
Article
PubMed
Google Scholar
Allen E, Xie Z, Gustafson AM, Sung GH. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet. 2004;36(12):1282.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Luo X, Shi T, Sun H, Song J, Ni Z, Gao Z. Selection of suitable inner reference genes for normalisation of microRNA expression response to abiotic stresses by RT-qPCR in leaves, flowers and young stems of peach. Sci Hortic-Amsterdam. 2014;165(3):281–7.
Article
CAS
Google Scholar
Wang D, Gao Z, Du P, Xiao W, Tan Q, Chen X, Li L, Gao D. Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Front Plant Sci. 2016;6:1248.
PubMed
PubMed Central
Google Scholar
Karkacier M, Erbas M, Uslu MK, Aksu M. Comparison of different extraction and detection methods for sugars using amino-bonded phase HPLC. J Chromatogr Sci. 2003;41(6):331–43.
Article
CAS
PubMed
Google Scholar
Sornkanok V, Zheng H, Peng Q, Jiang Q, Wang H, Fang T, Liao L, Wang L, He H, Han Y. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. J Agric Food Chem. 2016;64:6723–9.
Article
Google Scholar
Shabala SN, Shabala SI, Martynenko AI, Babourina O, Newman IA. Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust J Plant Physiol. 1998;25:609–16.
Article
CAS
Google Scholar