Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.
Article
CAS
Google Scholar
Hugon P, Dufour JC, Colson P, Fournier PE, Sallah K, Raoult D. A comprehensive repertoire of prokaryotic species identified in human beings. The Lancet Infectious diseases. 2015;15(10):1211–9.
Article
PubMed
Google Scholar
Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome medicine. 2016;8(1):51.
Article
PubMed
PubMed Central
Google Scholar
Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robles Alonso V, Guarner F. Linking the gut microbiota to human health. The British journal of nutrition. 2013;109(Suppl 2):S21–6.
Article
CAS
PubMed
Google Scholar
Winter SE, Baumler AJ. Why related bacterial species bloom simultaneously in the gut: principles underlying the 'Like will to like' concept. Cellular microbiology. 2014;16(2):179–84.
Article
CAS
PubMed
Google Scholar
Hahnke RL, Meier-Kolthoff JP, Garcia-Lopez M, Mukherjee S, Huntemann M, Ivanova NN, Woyke T, Kyrpides NC, Klenk HP, Goker M. Genome-Based Taxonomic Classification of Bacteroidetes. Frontiers in microbiology. 2016;7:2003.
Article
PubMed
PubMed Central
Google Scholar
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bull MJ, Plummer NT. Part 1: The Human Gut Microbiome in Health and Disease. Integrative medicine (Encinitas, Calif). 2014;13(6):17–22.
Google Scholar
Johnson EL, Heaver SL, Walters WA, Ley RE. Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes. Journal of molecular medicine (Berlin, Germany). 2017;95(1):1–8.
Article
CAS
Google Scholar
Oren A, da Costa MS, Garrity GM, Rainey FA, Rossello-Mora R, Schink B, Sutcliffe I, Trujillo ME, Whitman WB. Proposal to include the rank of phylum in the International Code of Nomenclature of Prokaryotes. Int J Syst Evol Microbiol. 2015;65(11):4284–7.
Article
CAS
PubMed
Google Scholar
Krieg NR, Ludwig W, Euzéby J, Whitman WB: Phylum XIV. Bacteroidetes phyl. nov. In: Bergey’s Manual® of Systematic Bacteriology: Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. Edited by Krieg NR, Staley JT, Brown DR, Hedlund BP, Paster BJ, Ward NL, Ludwig W, Whitman WB. New York, NY: Springer New York; 2010: 25-469.
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Frontiers in microbiology. 2011;2:93.
Article
PubMed
PubMed Central
Google Scholar
Muñoz R, Rossello-Mora R, Amann R. Revised phylogeny of Bacteroidetes and proposal of sixteen new taxa and two new combinations including Rhodothermaeota phyl. nov. Syst Appl Microbiol. 2016;39(5):281–96.
Article
PubMed
Google Scholar
Smith DR. Goodbye genome paper, hello genome report: the increasing popularity of 'genome announcements' and their impact on science. Briefings in functional genomics. 2017;16(3):156–62.
PubMed
Google Scholar
Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies. Molecular cell. 2015;58(4):586–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heather JM, Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107(1):1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kyrpides NC, Hugenholtz P, Eisen JA, Woyke T, Goker M, Parker CT, Amann R, Beck BJ, Chain PS, Chun J, et al. Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. PLoS biology. 2014;12(8):e1001920.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature. 2009;462(7276):1056–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D. Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie van Leeuwenhoek. 2007;91(4):351–72.
Article
PubMed
Google Scholar
Forde BM, O'Toole PW. Next-generation sequencing technologies and their impact on microbial genomics. Briefings in functional genomics. 2013;12(5):440–53.
Article
CAS
PubMed
Google Scholar
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nature reviews Genetics. 2016;17(6):333–51.
Article
CAS
PubMed
Google Scholar
Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, et al. Comparison of the two major classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph. Briefings in functional genomics. 2012;11(1):25–37.
Article
PubMed
CAS
Google Scholar
Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nature reviews Genetics. 2011;13(1):36–46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams D, Trimble WL, Shilts M, Meyer F, Ochman H. Rapid quantification of sequence repeats to resolve the size, structure and contents of bacterial genomes. BMC genomics. 2013;14:537.
Article
PubMed
PubMed Central
Google Scholar
Kamada M, Hase S, Sato K, Toyoda A, Fujiyama A, Sakakibara Y. Whole genome complete resequencing of Bacillus subtilis natto by combining long reads with high-quality short reads. PloS one. 2014;9(10):e109999.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shapiro JA, von Sternberg R. Why repetitive DNA is essential to genome function. Biological reviews of the Cambridge Philosophical Society. 2005;80(2):227–50.
Article
PubMed
Google Scholar
Avershina E, Rudi K. Dominant short repeated sequences in bacterial genomes. Genomics. 2015;105(3):175–81.
Article
CAS
PubMed
Google Scholar
Nagarajan N, Cook C, Di Bonaventura M, Ge H, Richards A, Bishop-Lilly KA, DeSalle R, Read TD, Pop M. Finishing genomes with limited resources: lessons from an ensemble of microbial genomes. BMC genomics. 2010;11:242.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bao E, Jiang T, Girke T. AlignGraph: algorithm for secondary de novo genome assembly guided by closely related references. Bioinformatics (Oxford, England). 2014;30(12):i319–28.
Article
CAS
Google Scholar
Kolmogorov M, Raney B, Paten B, Pham S. Ragout-a reference-assisted assembly tool for bacterial genomes. Bioinformatics (Oxford, England). 2014;30(12):i302–9.
Article
CAS
Google Scholar
Salzberg SL, Yorke JA. Beware of mis-assembled genomes. Bioinformatics (Oxford, England). 2005;21(24):4320–1.
Article
CAS
Google Scholar
Vincent AT, Derome N, Boyle B, Culley AI, Charette SJ. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. Journal of microbiological methods. 2016;
Dayarian A, Michael TP, Sengupta AM. SOPRA: Scaffolding algorithm for paired reads via statistical optimization. BMC bioinformatics. 2010;11:345.
Article
PubMed
PubMed Central
CAS
Google Scholar
English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PloS one. 2012;7(11):e47768.
Article
CAS
PubMed
PubMed Central
Google Scholar
Madoui MA, Engelen S, Cruaud C, Belser C, Bertrand L, Alberti A, Lemainque A, Wincker P, Aury JM. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC genomics. 2015;16:327.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mariano DC, Sousa Tde J, Pereira FL, Aburjaile F, Barh D, Rocha F, Pinto AC, Hassan SS, Saraiva TD, Dorella FA, et al. Whole-genome optical mapping reveals a mis-assembly between two rRNA operons of Corynebacterium pseudotuberculosis strain 1002. BMC genomics. 2016;17:315.
Article
PubMed
PubMed Central
CAS
Google Scholar
Madoui MA, Dossat C, d'Agata L, van Oeveren J, van der Vossen E, Aury JM. MaGuS: a tool for quality assessment and scaffolding of genome assemblies with Whole Genome Profiling Data. BMC bioinformatics. 2016;17:115.
Article
PubMed
PubMed Central
CAS
Google Scholar
Land M, Hauser L, Jun SR, Nookaew I, Leuze MR, Ahn TH, Karpinets T, Lund O, Kora G, Wassenaar T, et al. Insights from 20 years of bacterial genome sequencing. Functional & integrative genomics. 2015;15(2):141–61.
Article
CAS
Google Scholar
Howison M, Zapata F, Dunn CW. Toward a statistically explicit understanding of de novo sequence assembly. Bioinformatics (Oxford, England). 2013;29(23):2959–63.
Article
CAS
Google Scholar
Barbosa EG, Aburjaile FF, Ramos RT, Carneiro AR, Le Loir Y, Baumbach J, Miyoshi A, Silva A, Azevedo V. Value of a newly sequenced bacterial genome. World journal of biological chemistry. 2014;5(2):161–8.
PubMed
PubMed Central
Google Scholar
Stepanov VG, Tirumalai MR, Montazari S, Checinska A, Venkateswaran K, Fox GE. Bacillus pumilus SAFR-032 Genome Revisited: Sequence Update and Re-Annotation. PloS one. 2016;11(6):e0157331.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klassen JL, Currie CR. Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation. BMC genomics. 2012;13:14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fierst JL. Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Frontiers in genetics. 2015;6:220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. International journal of food microbiology. 2011;149(1):37–44.
Article
CAS
PubMed
Google Scholar
Periwal V, Scaria V. Insights into structural variations and genome rearrangements in prokaryotic genomes. Bioinformatics (Oxford, England). 2015;31(1):1–9.
Article
CAS
Google Scholar
R Core Team: R: A Language and Environment for Statistical Computing. In. Vienna, Austria; 2016.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic acids research. 2002;30(14):3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England). 2012;28(12):1647–9.
Article
Google Scholar
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology. 2003;52(5):696–704.
Article
PubMed
Google Scholar
Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of molecular evolution. 1985;22(2):160–74.
Article
CAS
PubMed
Google Scholar
Lee I, Kim YO, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International journal of systematic and evolutionary microbiology. 2015;
Treangen TJ, Darling AE, Achaz G, Ragan MA, Messeguer X, Rocha EP. A novel heuristic for local multiple alignment of interspersed DNA repeats. IEEE/ACM transactions on computational biology and bioinformatics. 2009;6(2):180–9.
Article
CAS
PubMed
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: an information aesthetic for comparative genomics. Genome research. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics (Oxford, England). 2012;28(4):593–4.
Article
CAS
Google Scholar
Coil D, Jospin G, Darling AE. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics (Oxford, England). 2015;31(4):587–9.
Article
CAS
Google Scholar
Li H: Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics (Oxford, England) 2012, 28(14):1838-1844.
Chikhi R, Rizk G. Space-efficient and exact de Bruijn graph representation based on a Bloom filter. Algorithms for molecular biology : AMB. 2013;8(1):22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S. Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome research. 2004;14(6):1147–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Leung HC, Chin FY, Yiu SM, Quan G, Liu B, Wang Y. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach. PloS one. 2014;9(12):e114253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience. 2012;1(1):18.
Article
PubMed
PubMed Central
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology : a journal of computational molecular cell biology. 2012;19(5):455–77.
Article
CAS
Google Scholar
Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome research. 2008;18(5):821–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics (Oxford, England). 2014;30(5):614–20.
Article
CAS
Google Scholar
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics (Oxford, England). 2014;30(1):31–7.
Article
CAS
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics (Oxford, England). 2013;29(8):1072–5.
Article
CAS
Google Scholar
Mariette J, Escudie F, Allias N, Salin G, Noirot C, Thomas S, Klopp C. NG6: Integrated next generation sequencing storage and processing environment. BMC genomics. 2012;13:462.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome research. 2017;27(5):722–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perez-Chaparro PJ, Lafaurie GI, Gracieux P, Meuric V, Tamanai-Shacoori Z, Castellanos JE, Bonnaure-Mallet M. Distribution of Porphyromonas gingivalis fimA genotypes in isolates from subgingival plaque and blood sample during bacteremia. Biomedica : revista del Instituto Nacional de Salud. 2009;29(2):298–306.
Article
Google Scholar
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England). 2014;30(14):2068–9.
Article
CAS
Google Scholar
Kremer FS, Eslabao MR, Dellagostin OA, Pinto LD. Genix: a new online automated pipeline for bacterial genome annotation. FEMS microbiology letters. 2016;363(23)
Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch GD, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Scientific reports. 2015;5:8365.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the HGNC resources in 2015. Nucleic acids research 2015. 43(Database issue):D1079–85.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Marchler-Bauer A, Bryant SH: CD-Search: protein domain annotations on the fly. Nucleic acids research 2004, 32(Web Server issue):W327-331.
Vallenet D, Belda E, Calteau A, Cruveiller S, Engelen S, Lajus A, Le Fevre F, Longin C, Mornico D, Roche D, et al. MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic acids research. 2013;41(Database issue):D636–47.
Article
CAS
PubMed
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods. 2011;8(10):785–6.
Article
CAS
PubMed
Google Scholar
Gomi M, Sonoyama M, Mitaku S. High performance system for signal peptide prediction: SOSUIsignal. Chem-bio informatics. journal. 2004;4(4):142–7.
CAS
Google Scholar
NY Y, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England). 2010;26(13):1608–15.
Article
CAS
Google Scholar
CS Y, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein science : a publication of the Protein Society. 2004;13(5):1402–6.
Article
CAS
Google Scholar
Berven FS, Flikka K, Jensen HB, Eidhammer I: BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria. Nucleic acids research 2004, 32(Web Server issue):W394-399.
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, Krogh A. Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein science : a publication of the Protein Society. 2003;12(8):1652–62.
Article
CAS
Google Scholar
Babu MM, Priya ML, Selvan AT, Madera M, Gough J, Aravind L, Sankaran K. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. Journal of bacteriology. 2006;188(8):2761–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic acids research. 2006;34(Database issue):D32–6.
Article
CAS
PubMed
Google Scholar
Grissa I, Vergnaud G, Pourcel C: CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic acids research 2007, 35(Web Server issue):W52-57.
Biswas A, Staals RH, Morales SE, Fineran PC, Brown CM. CRISPRDetect: A flexible algorithm to define CRISPR arrays. BMC genomics. 2016;17:356.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rousseau C, Gonnet M, Le Romancer M, Nicolas J. CRISPI: a CRISPR interactive database. Bioinformatics (Oxford, England). 2009;25(24):3317–8.
Article
CAS
Google Scholar
Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, Hugenholtz P. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC bioinformatics. 2007;8:209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, Brinkman FS. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic acids research. 2017;
Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, Surovcik K, Meinicke P, Merkl R. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC bioinformatics. 2006;7:142.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hsiao W, Wan I, Jones SJ, Brinkman FS. IslandPath: aiding detection of genomic islands in prokaryotes. Bioinformatics (Oxford, England). 2003;19(3):418–20.
Article
CAS
Google Scholar
Langille MG, Hsiao WW, Brinkman FS. Evaluation of genomic island predictors using a comparative genomics approach. BMC bioinformatics. 2008;9:329.
Article
PubMed
PubMed Central
CAS
Google Scholar
Che D, Hasan MS, Wang H, Fazekas J, Huang J, Liu Q. EGID: an ensemble algorithm for improved genomic island detection in genomic sequences. Bioinformation. 2011;7(6):311–4.
Article
PubMed
PubMed Central
Google Scholar
Vernikos GS, Parkhill J. Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics (Oxford, England). 2006;22(18):2196–203.
Article
CAS
Google Scholar
Shrivastava S, Reddy CV, Mande SS. INDeGenIUS, a new method for high-throughput identification of specialized functional islands in completely sequenced organisms. Journal of biosciences. 2010;35(3):351–64.
Article
CAS
PubMed
Google Scholar
Tu Q, Ding D. Detecting pathogenicity islands and anomalous gene clusters by iterative discriminant analysis. FEMS microbiology letters. 2003;221(2):269–75.
Article
CAS
PubMed
Google Scholar
Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PloS one. 2010;5(6):e11147.
Article
PubMed
PubMed Central
CAS
Google Scholar
Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2006;361(1475):1929–40.
Article
PubMed
PubMed Central
Google Scholar
Naito M, Hirakawa H, Yamashita A, Ohara N, Shoji M, Yukitake H, Nakayama K, Toh H, Yoshimura F, Kuhara S, et al. Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis. DNA research : an international journal for rapid publication of reports on genes and genomes. 2008;15(4):215–25.
Article
CAS
Google Scholar
Chastain-Gross RP, Xie G, Belanger M, Kumar D, Whitlock JA, Liu L, Raines SM, Farmerie WG, Daligault HE, Han CS et al: Genome Sequence of Porphyromonas gingivalis Strain 381. Genome Announc 2017, 5(2).
Dashper SG, Mitchell HL, Seers CA, Gladman SL, Seemann T, Bulach DM, Chandry PS, Cross KJ, Cleal SM, Reynolds EC. Porphyromonas gingivalis Uses Specific Domain Rearrangements and Allelic Exchange to Generate Diversity in Surface Virulence Factors. Frontiers in microbiology. 2017;8:48.
Article
PubMed
PubMed Central
Google Scholar
Klein BA, Chen T, Scott JC, Koenigsberg AL, Duncan MJ, LT H. Identification and characterization of a minisatellite contained within a novel miniature inverted-repeat transposable element (MITE) of Porphyromonas gingivalis. Mobile DNA. 2015;6:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hovik H, WH Y, Olsen I, Chen T. Comprehensive transcriptome analysis of the periodontopathogenic bacterium Porphyromonas gingivalis W83. Journal of bacteriology. 2012;194(1):100–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ochman H. Distinguishing the ORFs from the ELFs: short bacterial genes and the annotation of genomes. Trends in genetics : TIG. 2002;18(7):335–7.
Article
CAS
PubMed
Google Scholar
Lawrence J. When ELFs are ORFs, but don't act like them. Trends in genetics : TIG. 2003;19(3):131–2.
Article
CAS
PubMed
Google Scholar
Fattash I, Rooke R, Wong A, Hui C, Luu T, Bhardwaj P, Yang G. Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome. 2013;56(9):475–86.
Article
CAS
PubMed
Google Scholar
Bocs S, Danchin A, Medigue C. Re-annotation of genome microbial coding-sequences: finding new genes and inaccurately annotated genes. BMC bioinformatics. 2002;3:5.
Article
PubMed
PubMed Central
Google Scholar
Califano JV, Kitten T, Lewis JP, Macrina FL, Fleischmann RD, Fraser CM, Duncan MJ, Dewhirst FE. Characterization of Porphyromonas gingivalis insertion sequence-like element ISPg5. Infection and immunity. 2000;68(9):5247–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szafranski SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. Journal of biotechnology. 2017;250:29–44.
Article
CAS
PubMed
Google Scholar
Lenhart JS, Schroeder JW, Walsh BW, Simmons LA. DNA repair and genome maintenance in Bacillus subtilis. Microbiology and molecular biology reviews : MMBR. 2012;76(3):530–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heinken A, Sahoo S, Fleming RM, Thiele I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut microbes. 2013;4(1):28–40.
Article
PubMed
PubMed Central
Google Scholar
Garza DR, Van Verk MC, Huynen MA, Dutilh BE: Bottom-up ecology of the human microbiome: from metagenomes to metabolomes. bioRxiv 2016:060673.
Magnusdottir S, Heinken A, Kutt L, Ravcheev DA, Bauer E, Noronha A, Greenhalgh K, Jager C, Baginska J, Wilmes P, et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nature biotechnology. 2017;35(1):81–9.
Article
CAS
PubMed
Google Scholar
Papanicolaou A. The life cycle of a genome project: perspectives and guidelines inspired by insect genome projects. F1000Research. 2016;5:18.
Article
PubMed
PubMed Central
Google Scholar
Field D, Wilson G, van der Gast C. How do we compare hundreds of bacterial genomes? Current opinion in microbiology. 2006;9(5):499–504.
Article
CAS
PubMed
Google Scholar
Tatusova T, Ciufo S, Fedorov B, O'Neill K, Tolstoy I. RefSeq microbial genomes database: new representation and annotation strategy. Nucleic acids research. 2014;42(Database issue):D553–9.
Article
CAS
PubMed
Google Scholar
Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Goker M, Coates RC, Hadjithomas M, Pavlopoulos GA, Paez-Espino D, et al. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nature biotechnology. 2017;35(7):676–83.
Article
CAS
PubMed
Google Scholar
Galperin MY, Koonin EV. From complete genome sequence to 'complete' understanding? Trends in biotechnology. 2010;28(8):398–406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui H, Yoder-Himes DR, Mizgalska D, Nguyen KA, Potempa J, Olsen I. Genome Sequence of Porphyromonas gingivalis Strain HG66 (DSM 28984). Genome announcements. 2014;2(5)
McLean JS, Lombardo MJ, Ziegler MG, Novotny M, Yee-Greenbaum J, Badger JH, Tesler G, Nurk S, Lesin V, Brami D, et al. Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome research. 2013;23(5):867–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen T, Siddiqui H, Olsen I. silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics. Frontiers in cellular and infection microbiology. 2017;7:28.
PubMed
PubMed Central
Google Scholar
Mavromatis K, Land ML, Brettin TS, Quest DJ, Copeland A, Clum A, Goodwin L, Woyke T, Lapidus A, Klenk HP, et al. The fast changing landscape of sequencing technologies and their impact on microbial genome assemblies and annotation. PloS one. 2012;7(12):e48837.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utturkar SM, Klingeman DM, Hurt RA, Jr., Brown SD: A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies. Frontiers in microbiology 2017, 8:1272.
Fadeev E, De Pascale F, Vezzi A, Hubner S, Aharonovich D, Sher D. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island. Frontiers in microbiology. 2016;7:248.
Article
PubMed
PubMed Central
Google Scholar
Kryukov K, Imanishi T. Human Contamination in Public Genome Assemblies. PloS one. 2016;11(9):e0162424.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mallet L, Bitard-Feildel T, Cerutti F, Chiapello H. PhylOligo: a package to identify contaminant or untargeted organism sequences in genome assemblies. Bioinformatics (Oxford, England). 2017;
Thomma B, Seidl MF, Shi-Kunne X, Cook DE, Bolton MD, van Kan JAL, Faino L. Mind the gap; seven reasons to close fragmented genome assemblies. Fungal genetics and biology : FG & B. 2016;90:24–30.
Article
CAS
Google Scholar
Mardis E, McPherson J, Martienssen R, Wilson RK, McCombie WR. What is finished, and why does it matter. Genome research. 2002;12(5):669–71.
Article
CAS
PubMed
Google Scholar
Riba-Grognuz O, Keller L, Falquet L, Xenarios I, Wurm Y. Visualization and quality assessment of de novo genome assemblies. Bioinformatics (Oxford, England). 2011;27(24):3425–6.
Article
CAS
Google Scholar
Baker M. De novo genome assembly: what every biologist should know. Nat Meth. 2012;9(4):333–7.
Article
CAS
Google Scholar
Khiste N, Ilie L. LASER: Large genome ASsembly EvaluatoR. BMC research notes. 2015;8:709.
Article
PubMed
PubMed Central
CAS
Google Scholar
Earl D, Bradnam K, St John J, Darling A, Lin D, Fass J, HO Y, Buffalo V, Zerbino DR, Diekhans M, et al. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome research. 2011;21(12):2224–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dias Z, Dias U, Setubal JC. SIS: a program to generate draft genome sequence scaffolds for prokaryotes. BMC bioinformatics. 2012;13:96.
Article
PubMed
PubMed Central
Google Scholar
Magoc T, Pabinger S, Canzar S, Liu X, Su Q, Puiu D, Tallon LJ, Salzberg SL. GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics (Oxford, England). 2013;29(14):1718–25.
Article
CAS
Google Scholar
Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. Icarus: visualizer for de novo assembly evaluation. Bioinformatics (Oxford, England). 2016;32(21):3321–3.
Article
CAS
Google Scholar
Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ. Performance comparison of benchtop high-throughput sequencing platforms. Nature biotechnology. 2012;30(5):434–9.
Article
CAS
PubMed
Google Scholar
Hunt M, Newbold C, Berriman M, Otto TD. A comprehensive evaluation of assembly scaffolding tools. Genome biology. 2014;15(3):R42.
Article
PubMed
PubMed Central
Google Scholar
Treangen TJ, Abraham AL, Touchon M, Rocha EP. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS microbiology reviews. 2009;33(3):539–71.
Article
CAS
PubMed
Google Scholar
Touchon M, Rocha EP. Causes of insertion sequences abundance in prokaryotic genomes. Molecular biology and evolution. 2007;24(4):969–81.
Article
CAS
PubMed
Google Scholar
Newton IL, Bordenstein SR. Correlations between bacterial ecology and mobile DNA. Current microbiology. 2011;62(1):198–208.
Article
CAS
PubMed
Google Scholar
Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome research. 2010;20(9):1165–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denton JF, Lugo-Martinez J, Tucker AE, Schrider DR, Warren WC, Hahn MW. Extensive error in the number of genes inferred from draft genome assemblies. PLoS computational biology. 2014;10(12):e1003998.
Article
PubMed
PubMed Central
Google Scholar
Enersen M, Olsen I, van Winkelhoff AJ, Caugant DA. Multilocus sequence typing of Porphyromonas gingivalis strains from different geographic origins. Journal of clinical microbiology. 2006;44(1):35–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Igboin CO, Griffen AL, Leys EJ. Porphyromonas gingivalis strain diversity. Journal of clinical microbiology. 2009;47(10):3073–81.
Article
PubMed
PubMed Central
Google Scholar
Enersen M. Porphyromonas gingivalis: a clonal pathogen?: Diversities in housekeeping genes and the major fimbriae gene. Journal of oral microbiology. 2011;3
Dolgilevich S, Rafferty B, Luchinskaya D, Kozarov E. Genomic comparison of invasive and rare non-invasive strains reveals Porphyromonas gingivalis genetic polymorphisms. Journal of oral microbiology. 2011;3
Tribble GD, Rigney TW, Dao DH, Wong CT, Kerr JE, Taylor BE, Pacha S, Kaplan HB. Natural competence is a major mechanism for horizontal DNA transfer in the oral pathogen Porphyromonas gingivalis. mBio. 2012;3(1)
Tribble GD, Lamont GJ, Progulske-Fox A, Lamont RJ. Conjugal transfer of chromosomal DNA contributes to genetic variation in the oral pathogen Porphyromonas gingivalis. Journal of bacteriology. 2007;189(17):6382–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annual review of microbiology. 2001;55:561–90.
Article
CAS
PubMed
Google Scholar
Tibayrenc M, Ayala FJ. How clonal are Neisseria species? The epidemic clonality model revisited. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(29):8909–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riedel T, Bunk B, Thurmer A, Sproer C, Brzuszkiewicz E, Abt B, Gronow S, Liesegang H, Daniel R, Overmann J. Genome Resequencing of the Virulent and Multidrug-Resistant Reference Strain Clostridium difficile 630. Genome announcements. 2015;3(2)
Malone KM, Farrell D, Stuber TP, Schubert OT, Aebersold R, Robbe-Austerman S, Gordon SV. Updated Reference Genome Sequence and Annotation of Mycobacterium bovis AF2122/97. Genome announcements. 2017;5(14)
Chen T, Hosogi Y, Nishikawa K, Abbey K, Fleischmann RD, Walling J, Duncan MJ. Comparative whole-genome analysis of virulent and avirulent strains of Porphyromonas gingivalis. Journal of bacteriology. 2004;186(16):5473–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slots J, Gibbons RJ. Attachment of Bacteroides melaninogenicus subsp. asaccharolyticus to oral surfaces and its possible role in colonization of the mouth and of periodontal pockets. Infection and immunity. 1978;19(1):254–64.
CAS
PubMed
PubMed Central
Google Scholar
Loos BG, Mayrand D, Genco RJ, Dickinson DP. Genetic heterogeneity of Porphyromonas (Bacteroides) gingivalis by genomic DNA fingerprinting. Journal of dental research. 1990;69(8):1488–93.
Article
CAS
PubMed
Google Scholar
Guo FB, Xiong L, Teng JL, Yuen KY, Lau SK, Woo PC. Re-annotation of protein-coding genes in 10 complete genomes of Neisseriaceae family by combining similarity-based and composition-based methods. DNA research : an international journal for rapid publication of reports on genes and genomes. 2013;20(3):273–86.
Article
CAS
Google Scholar
Zhang HX, Li SJ, Zhou HQ. Evaluating the annotation of protein-coding genes in bacterial genomes: Chloroflexus aurantiacus strain J-10-fl and Natrinema sp J7-2 as case studies. Genetics and molecular research : GMR. 2014;13(4):10891–7.
Article
CAS
PubMed
Google Scholar
Richardson EJ, Watson M. The automatic annotation of bacterial genomes. Briefings in bioinformatics. 2013;14(1):1–12.
Article
CAS
PubMed
Google Scholar
Indrischek H, Wieseke N, Stadler PF, Prohaska SJ. The paralog-to-contig assignment problem: high quality gene models from fragmented assemblies. Algorithms for molecular biology : AMB. 2016;11:1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Current opinion in microbiology. 2015;23:148–54.
Article
CAS
PubMed
Google Scholar
Touchon M, Rocha EP. Coevolution of the Organization and Structure of Prokaryotic Genomes. Cold Spring Harbor perspectives in biology. 2016;8(1):a018168.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brunner J, Wittink FR, Jonker MJ, de Jong M, Breit TM, Laine ML, de Soet JJ, Crielaard W. The core genome of the anaerobic oral pathogenic bacterium Porphyromonas gingivalis. BMC microbiology. 2010;10:252.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klein BA, Tenorio EL, Lazinski DW, Camilli A, Duncan MJ, LT H. Identification of essential genes of the periodontal pathogen Porphyromonas gingivalis. BMC genomics. 2012;13:578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutcherson JA, Gogeneni H, Yoder-Himes D, Hendrickson EL, Hackett M, Whiteley M, Lamont RJ, Scott DA. Comparison of inherently essential genes of Porphyromonas gingivalis identified in two transposon-sequencing libraries. Molecular oral microbiology. 2016;31(4):354–64.
Article
CAS
PubMed
Google Scholar
Korona R. Gene dispensability. Current opinion in biotechnology. 2011;22(4):547–51.
Article
CAS
PubMed
Google Scholar
Ijaq J, Chandrasekharan M, Poddar R, Bethi N, Sundararajan VS. Annotation and curation of uncharacterized proteins- challenges. Frontiers in genetics. 2015;6:119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fischer D, Eisenberg D: Finding families for genomic ORFans. Bioinformatics (Oxford, England) 1999, 15(9):759-762.
Watanabe T, Maruyama F, Nozawa T, Aoki A, Okano S, Shibata Y, Oshima K, Kurokawa K, Hattori M, Nakagawa I, et al. Complete genome sequence of the bacterium Porphyromonas gingivalis TDC60, which causes periodontal disease. Journal of bacteriology. 2011;193(16):4259–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future microbiology. 2013;8(5):607–20.
Article
CAS
PubMed
Google Scholar
Kerr JE, Abramian JR, Dao DH, Rigney TW, Fritz J, Pham T, Gay I, Parthasarathy K, Wang BY, Zhang W, et al. Genetic exchange of fimbrial alleles exemplifies the adaptive virulence strategy of Porphyromonas gingivalis. PloS one. 2014;9(3):e91696.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lamont RJ, Jenkinson HF. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiology and molecular biology reviews : MMBR. 1998;62(4):1244–63.
CAS
PubMed
PubMed Central
Google Scholar
How KY, Song KP, Chan KG. Porphyromonas gingivalis: An Overview of Periodontopathic Pathogen below the Gum Line. Frontiers in microbiology. 2016;7:53.
Article
PubMed
PubMed Central
Google Scholar
Nelson KE, Fleischmann RD, DeBoy RT, Paulsen IT, Fouts DE, Eisen JA, Daugherty SC, Dodson RJ, Durkin AS, Gwinn M, et al. Complete genome sequence of the oral pathogenic Bacterium porphyromonas gingivalis strain W83. Journal of bacteriology. 2003;185(18):5591–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koren S, Phillippy AM. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Current opinion in microbiology. 2015;23:110–20.
Article
CAS
PubMed
Google Scholar
Teng JLL, Yeung ML, Chan E, Jia L, Lin CH, Huang Y, Tse H, Wong SSY, Sham PC, Lau SKP, et al. PacBio But Not Illumina Technology Can Achieve Fast, Accurate and Complete Closure of the High GC, Complex Burkholderia pseudomallei Two-Chromosome Genome. Frontiers in microbiology. 2017;8:1448.
Article
PubMed
PubMed Central
Google Scholar
Craddock T, Harwood CR, Hallinan J, Wipat A. e-Science: relieving bottlenecks in large-scale genome analyses. Nature reviews. Microbiology. 2008;6(12):948–54.
CAS
PubMed
Google Scholar