Toda R. Vegetative propagation in relation to Japenese forest tree improvement. N Z J For Sci. 1974;4:410–7.
Google Scholar
Forest Agency, Ministry of Agriculture, Forest and Fisheries, Japan. In: Forest agency, editor. Forest management. Annual report on forest and forestry in Japan (in Japanese). Tokyo: National Forestry Extension Association in Japan; 2012. p. 71–2.
Google Scholar
Baba K, Nakae K. The national epidemiological survey of allergic rhinitis in 2008-comparison between 1998 and 2008 (in Japanese). Prog Med. 2008;28:2001–12.
Google Scholar
Agricultural, Forestry & Fisheries Research Center, Toyama Prefecture. Database of male sterile Japanese cedar (in Japanese). 2011. http://taffrc.pref.toyama.jp/nsgc/shinrin/webfile/t1_e8f20b2d986b56bc92730baad9a4ab4b.pdf.
Google Scholar
Saito M. Breeding strategy for the pollinosis preventive cultivars of Cryptomeria japonica D (in Japanese with English summary). Don. J Jpn For Soc. 2010;92:316–79.
Article
Google Scholar
Tsumura Y, Suyama Y, Yoshimura K, Shirato N, Mukai Y. Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theor Appl Genet. 1997;94:764–72.
Article
CAS
Google Scholar
Nikaido AM, Ujino T, Iwata H, Yoshimura K, Yoshimura H, Sugiyama Y, et al. AFLP and CAPS linkage maps of Cryptomeria japonica. Theor Appl Genet. 2000;100:825–31.
Article
CAS
Google Scholar
Iwata H, Ujino-Ihara T, Yoshimura K, Nagasaka K, Mukai Y, Tsumura Y. Cleaved amplified polymorphic sequence markers in sugi, Cryptomeria japonica D. Don, and their locations on a linkage map. Theor Appl Genet. 2001;103:881–95.
Article
CAS
Google Scholar
Moriguchi Y, Iwata H, Ujino-Ihara T, Yoshimura K, Taira H, Tsumura Y. Development and characterization of microsatellite markers for Cryptomeria japonica D.Don. Theor Appl Genet. 2003;106:751–8.
Article
CAS
PubMed
Google Scholar
Moriguchi Y, Ueno S, Ujino-Ihara T, Futamura N, Matsumoto A, Shinohara K, Tsumura Y. Characterization of EST-SSRs from Cryptomeria japonica. Conserv Gene Resour. 2009;1:373–6.
Article
Google Scholar
Tani N, Takahashi T, Ujino-Ihara T, Iwata H, Yoshimura K, Tsumura Y. Development and characteristics of microsatellite markers for sugi (Cryptomeria japonica D. Don) derived from microsatellite-enriched libraries. Ann For Sci. 2004;61:569–75.
Article
CAS
Google Scholar
Futamura N, Ujino-Ihara T, Nishiguchi M, Kanamori H, Yoshimura K, Sakaguchi M, Shinohara K. Analysis of expressed sequence tags from Cryptomeria japonica pollen reveals novel pollen-specific transcripts. Tree Physiol. 2006;26:1517–28.
Article
CAS
PubMed
Google Scholar
Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjyo T, Seki M, et al. Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics. 2008;9:383.
Article
PubMed
PubMed Central
Google Scholar
Uchiyama K, Ujino-Ihara T, Ueno S, Taguchi Y, Futamura N, Shinohara K, Tsumura Y. Single nucleotide polymorphisms in Cryptomeria japonica: their discovery and validation for genome mapping and diversity studies. Tree Genet Genomics. 2012;8:1213–22.
Article
Google Scholar
Ueno S, Moriguchi Y, Uchiyama K. A second generation framework for the analysis of microsatellites in expressed sequence tags and the development of EST-SSR markers for a conifer, Cryptomeria japonica. BMC Genomics. 2012;13:136.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsubomura M, Kurita M, Watanabe A. Determination of male strobilus developmental stages by cytological and gene expression analyses in Japanese cedar (Cryptomeria japonica). Tree Physiol. 2016;35:653–66.
Article
Google Scholar
Moriguchi Y, Ujino-Ihara T, Uchiyama K, Futamura N, Saito M, Ueno S. The construction of a high-density linkage map for identifying SNP markers that are tightly linked to a nuclear-recessive major gene for male sterility in Cryptomeria japonica D. Don. BMC Genet. 2012;13:95.
Article
CAS
Google Scholar
Moriguchi Y, Ueno S, Saito M, Higuchi Y, Miyajima D, Itoo S, Tsumura Y. A simple allele-specific PCR marker for identifying male-sterile trees: towards DNA marker-assisted selection in the Cryptomeria japonica breeding program. Tree Genet Genomics. 2014;10:1069–77.
Article
Google Scholar
Moriguchi Y, Ueno S, Higuchi Y, Miyajima D, Itoo S, Futamura N, et al. Establishment of a microsatellite panel covering the sugi (Cryptomeria japonica) genome, and its application for localization of a male-sterile gene (ms-2). Mol Breed. 2014;33:315–25.
Article
CAS
Google Scholar
Moriguchi Y, Uchiyama K, Ueno S. A high-density linkage map with 2560 markers and its application for the localization of the male-sterile gene ms3 and ms4 in Cryptomeria japonica D. Don. Tree Genet Genomics. 2016;12:57.
Article
Google Scholar
Moriguchi Y, Totsuka S, Iwai J, Matsumoto A, Ueno S, Tsumura Y. Pyramiding of male-sterile gene in Cryptomeria japonica D. Don with the aid of closely linked markers. Tree Genet Genomics. 2017;13:61.
Article
Google Scholar
Moritsuka E, Hisataka Y, Tamura M, Uchiyama K, Watanabe A, Tsumura Y, Tachida H. Extended linkage disequilibrium in noncoding regions in a conifer, Cryptomeria japonica. Genetics. 2012;190:1145–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura M, Hisataka Y, Moritsuka E, Watanabe A, Uchiyama K, Futamura N, et al. Analyses of random BAC clone sequences of Japanese cedar, Cryptomeria japonica. Tree Gene Genomes. 2015;11:50.
Article
Google Scholar
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497:579–84.
Article
CAS
PubMed
Google Scholar
Zimin A, Stevens K, Crepeau M, Holts-Morris A, Koriabine M, Marcais G, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014;196:875–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15:R59.
Article
PubMed
PubMed Central
Google Scholar
Gonzalez-Martinez S, Wheeler N, Ersoz E, Nelson CD, Neale DB. Association genetics in Pinus taeda L. I. Wood property traits. Genetics. 2007;175:399–409.
Article
PubMed
PubMed Central
Google Scholar
Eckert A, Bower AD, Wegrzyn JL, Pande B, Jermstad KD, Krutovsky K, et al. Association genetics of coastal Douglas fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-hardiness related traits. Genetics. 2009;182:1289–302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillon S, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Allelic variation in cell wall candidate genes affecting solid wood properties in natural populations and land races of Pinus radiata. Genetics. 2010;185:1477–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beaulieu J, Doerksen T, Boyle B, Clement S, Deslauriers M, Beauseigle S, et al. Association genetics of wood physical traits in the conifer white spruce and relationships with gene expression. Genetics. 2011;188:197–214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uchiyama K, Iwata H, Moriguchi Y, Ujino-Ihara T, Ueno S, Taguchi Y, et al. Demonstration of genome-wide association studies for identifying markers for wood property and male strobili traits in Cryptomeria japonica. PLoS One. 2013;8:11.
Google Scholar
Fuentes-Utrilla P, Goswami C, Cottrell J, Pong-Wong R, Law A, A’Hara SW, et al. QTL analysis and genomic selection using RADseq derived markers in Sitka spruce: the potential utility of within family data. Tree Genet Genomes. 2017;13:33.
Article
Google Scholar
Iwata H, Hayashi T, Tsumura Y. Prospects for genomic selection in conifer breeding: a simulation study of Cryptomeria japonica. Tree Genet Genomes. 2011;7:747–58.
Article
Google Scholar
Mishima K, Fujiwara T, Iki T, Kuroda K, Yamashita K, Tamura M, et al. Transcriptome sequencing and profiling of expressed genes in cambial zone and differentiating xylem of Japanese cedar (Cryptomeria japonica). BMC Genomics. 2014;15:219.
Article
PubMed
PubMed Central
Google Scholar
Nose M, Watanabe A. Clock genes and diurnal transcriptome dynamics in summer and winter in the gymnosperm Japanese cedar (Cryptomeria japonica (L.f.) D.Don). BMC Plant Biol. 2002;14:308.
Google Scholar
Martínez-García PJ, Stevens KA, Wegrzyn JL, Liechty J, Crepeau M, Langlay CH, Neal DB. Combination of multipoint maximum likelihood (MML) and regression mapping algorithms to construct a high-density genetic linkage map for loblolly pine (Pinus taeda L.). Tree Genet Genomes. 2013;9:1529–35.
Article
Google Scholar
Neves LG, Davis JM, Barbazuk WB, Kirst M. A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping. G3. 2014;4:29–37.
Article
PubMed
Google Scholar
Westbrook JW, Chhatre VE, Wu LS, Chamala S, Naves LG, Munoz P, et al. A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinus taeda. G3. 2015;5:1685–94.
Article
PubMed
PubMed Central
Google Scholar
Plomion C, Chancerel E, Endelman J, Lamy JB, Mandrou E, Lesur I, et al. Genome-wide distribution of genetic diversity and linkage disequilibrium in a mass-selected population of maritime pine. BMC Genomics. 2014;15:171.
Article
PubMed
PubMed Central
Google Scholar
Pavy N, Pelgas B, Laroche J, Rigault P, Isabel N, Bousquet J. A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biol. 2012;10:84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen R, Pan Y, Wang Y, Zhu L, He G. Temperature-sensitive splicing is an important molecular regulation mechanism of thermosensitive genic male sterility in rice. Chin Sci Bullet. 2009;54:2354–62.
Article
CAS
Google Scholar
Li X, Gao Y, Wei Y, Deng L, Chen G, Li X, et al. Rice APOPTOSIS INHIBITOR5 coupled with two DEAD-box adenosine 5′-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell. 2011;23:1416–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qin P, Wang Y, Li Y, Ma B, Li S. Analysis of cytoplasmic effects and fine-mapping of a genic male sterile line in rice. PLoS One. 2013;8:e61719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, et al. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One. 2013;8:e72178.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Oses-Prieto JA, Li KH, Fernandes JF, Burlingame AL, Walbot V. The male sterile 8 mutation of maize disrupts the temporal progression of the transcriptome and results in the mis-regulation of metabolic functions. Plant J. 2010;63:939–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Skibbe D, Walbot V. Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. Plant Reprod. 2013;26:329–38.
Article
CAS
PubMed
Google Scholar
Huang CF, Miki D, Tang K, Zhou HR, Zheng Z, Chen W, et al. A pre-mRNA-splicing factor is required for RNA-directed DNA methylation in Arabidopsis. PLoS Genet. 2013;9:e1003779.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthes A, Schmidt-Gattung S, Kohler D, Forner J, Wildum S, Raabe M, et al. Two DEAD-box proteins may be part of RNA-dependent high-molecular-mass protein complexes in Arabidopsis mitochondria. Plant Physiol. 2007;145:1637–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minic Z. Physiological roles of plant glycoside hydrolases. Planta. 2008;227:723–40.
Article
CAS
PubMed
Google Scholar
Wijeratne A, Zang W, Sun Y, Liu W, Albert R, Zheng Z, et al. Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J. 2007;52:14–29.
Article
CAS
PubMed
Google Scholar
Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development. 2006;133:3085–95.
Article
CAS
PubMed
Google Scholar
Basu D, Tian L, Wang W, Bobbs S, Herock H, Travers A, Showalter AM. A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in Arabidopsis. BMC Plant Biol. 2015;15:295.
Article
PubMed
PubMed Central
Google Scholar
Grattapaglia D, Bertolucci FLG, Penchel R, Sederoff RR. Genetic mapping of quantitative trait loci controlling growth and wood quality traits in Eucalyptus grandis using a maternal half-sib family and RAPD markers. Genetics. 1996;144:1205–14.
CAS
PubMed
PubMed Central
Google Scholar
Grattapaglia D, Resende MDV. Genomic selection in forest tree breeding. Tree Genet Genomes. 2011;7:241–55.
Article
Google Scholar
Isik F. Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forest. 2014;45:379–401.
Article
Google Scholar
Plomion C, Durel C, O’Malley D. Genetic dissection of height in maritime pine seedlings raised under accelerated growth conditions. Theor Appl Genet. 1996;93:849–58.
Article
CAS
PubMed
Google Scholar
Lerceteau E, Plomion C, Andersson B. AFLP mapping and detection of quantitative trait loci (QTLs) for economically important traits in Pinus sylvestris: a preliminary study. Mol Breed. 2000;6:451–8.
Article
CAS
Google Scholar
Kuramoto N, Kondo T, Fujisawa Y, Nakata R, Hayashi E, Goto Y. Detection of quantitative trait loci for wood strength in Cryptomeria japonica. Can J For Res. 2000;30:1525–33.
Article
CAS
Google Scholar
Swell MM, Bassoni DL, Megraw RA, Wheeler NC, Neal DB. Identification of QTLs influencing wood property traits in loblolly pine (Pinus taeda L.). I. Physical wood properties. Theor Appl Genet. 2000;101:1273–81.
Article
Google Scholar
Pot D, Rodrigues JC, Rozenberg P, Chantre G, Tibbits J, Cahalan C, et al. QTLs and candidate genes for wood properties in maritime pine (Pinus pinaster Ait.). Tree Genet Genomes. 2006;2:10–24.
Article
Google Scholar
Devey ME, Delfino-Mix A, Kinloch BB Jr, Neale DB. Random amplified polymorphic DNA markers tightly linked to a gene for resistance to white pine blister rust in sugar pine. Proc Natl Acad Sci U S A. 1995;92:2066–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondo T, Terada K, Hayashi E, Kuramoto N, Okamura M, Kawasaki H. RAPD markers linked to a gene for resistance to pine needle gall midge in Japanese black pine (Pinus thunbergii). Theor Appl Genet. 2000;100:391–5.
Article
CAS
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal. 2011;17:10–2.
Article
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;14:1754–60.
Article
Google Scholar
Li H, Handsaker A, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.
Article
PubMed
PubMed Central
Google Scholar
Guan L, Shiraishi S. Tetranucleotide microsatellite markers in Cryptomeria japonica D., don. Conserv Genet Resour. 2011;3:283–5.
Article
Google Scholar
Van Ooijen JW. Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res. 2011;93:343–9.
Article
CAS
Google Scholar
Van Ooijen JW. MapQTL 6, software for the mapping of quantitative trait loci in experimental populations of diploid species. Wageningen: Kyazma BV; 2009.
Google Scholar
Voorrips RE. MapChart: software for the graphical representation of linkage maps and QTLs. J Hered. 2002;93:77–8.
Article
CAS
PubMed
Google Scholar