Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009;218(3):467–72.
Article
CAS
PubMed
Google Scholar
Flor TB, Blom B. Pathogens use and abuse MicroRNAs to deceive the immune system. Int J Mol Sci. 2016;17(4):538.
Article
PubMed
PubMed Central
Google Scholar
Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368(18):1685–94.
Article
CAS
PubMed
Google Scholar
Gigli I, Maizon DO. microRNAs and the mammary gland: a new understanding of gene expression. Genet Mol Biol. 2013;36(4):465–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawless N, Reinhardt TA, Bryan K, Baker M, Pesch B, Zimmerman D, et al. MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model. G3 (Bethesda). 2014;4(6):957–71.
Article
CAS
PubMed Central
Google Scholar
Lawless N, Foroushani AB, McCabe MS, O'Farrelly C, Lynn DJ. Next generation sequencing reveals the expression of a unique miRNA profile in response to a gram-positive bacterial infection. PLoS One. 2013;8(3):e57543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin W, Ibeagha-Awemu EM, Liang G, Beaudoin F, Zhao X, Guan le L. Transcriptome microRNA profiling of bovine mammary epithelial cells challenged with Escherichia coli or Staphylococcus aureus bacteria reveals pathogen directed microRNA expression profiles. BMC Genomics. 2014;15:181.
Article
PubMed
PubMed Central
Google Scholar
Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics. 2015;16:806.
Article
PubMed
PubMed Central
Google Scholar
Shaughnessy RG, Farrell D, Riepema K, Bakker D, Gordon SV. Analysis of Biobanked serum from a Mycobacterium avium subsp paratuberculosis bovine infection model confirms the remarkable stability of circulating miRNA profiles and defines a bovine serum miRNA repertoire. PLoS One. 2015;10(12):e0145089.
Article
PubMed
PubMed Central
Google Scholar
Sica A, Erreni M, Allavena P, Porta C. Macrophage polarization in pathology. Cellular and molecular life sciences : CMLS. 2015;72(21):4111–26.
Article
CAS
PubMed
Google Scholar
Duvel A, Frank C, Schnapper A, Schuberth HJ, Sipka A. Classically or alternatively activated bovine monocyte-derived macrophages in vitro do not resemble CD163/calprotectin biased macrophage populations in the teat. Innate immunity. 2012;18(6):886–96.
Article
PubMed
Google Scholar
Jorgensen HJ, Nordstoga AB, Sviland S, Zadoks RN, Solverod L, Kvitle B, et al. Streptococcus agalactiae in the environment of bovine dairy herds--rewriting the textbooks? Vet Microbiol. 2016;184:64–72.
Article
CAS
PubMed
Google Scholar
Manning SD, Springman AC, Lehotzky E, Lewis MA, Whittam TS, Davies HD. Multilocus sequence types associated with neonatal group B streptococcal sepsis and meningitis in Canada. J Clin Microbiol. 2009;47(4):1143–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lewandowska-Sabat AM, Boman GM, Downing A, Talbot R, Storset AK, Olsaker I. The early phase transcriptome of bovine monocyte-derived macrophages infected with Staphylococcus aureus in vitro. BMC Genomics. 2013;14:891.
Article
PubMed
PubMed Central
Google Scholar
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spalenza V, Girolami F, Bevilacqua C, Riondato F, Rasero R, Nebbia C, et al. Identification of internal control genes for quantitative expression analysis by real-time PCR in bovine peripheral lymphocytes. Vet J. 2011;189(3):278–83.
Article
CAS
PubMed
Google Scholar
Piehler AP, Grimholt RM, Ovstebo R, Berg JP. Gene expression results in lipopolysaccharide-stimulated monocytes depend significantly on the choice of reference genes. BMC Immunol. 2010;11:21.
Article
PubMed
PubMed Central
Google Scholar
Capece V, Garcia Vizcaino JC, Vidal R, Rahman RU, Pena Centeno T, Shomroni O, et al. Oasis: online analysis of small RNA deep sequencing data. Bioinformatics. 2015;31(13):2205–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, featureCounts SW. An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Friedlander MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52.
Article
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
Google Scholar
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4
Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, et al. InnateDB: systems biology of innate immunity and beyond--recent updates and continuing curation. Nucleic Acids Res. 2013;41(Database issue):D1228–33.
Article
CAS
PubMed
Google Scholar
O'Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of toll-like receptor signalling. Nat Rev Immunol. 2011;11(3):163–75.
Article
PubMed
Google Scholar
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henneke P, Berner R. Interaction of neonatal phagocytes with group B streptococcus: recognition and response. Infect Immun. 2006;74(6):3085–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Budd KE, Mitchell J, Keane OM. Lineage associated expression of virulence traits in bovine-adapted Staphylococcus aureus. Vet Microbiol. 2016;189:24–31.
Article
PubMed
Google Scholar
Tassi R, McNeilly TN, Sipka A, Zadoks RN. Correlation of hypothetical virulence traits of two Streptococcus uberis strains with the clinical manifestation of bovine mastitis. Vet Res. 2015;46:123.
Article
PubMed
PubMed Central
Google Scholar
Pang M, Sun L, He T, Bao H, Zhang L, Zhou Y, et al. Molecular and virulence characterization of highly prevalent Streptococcus agalactiae circulated in bovine dairy herds. Vet Res. 2017;48(1):65.
Article
PubMed
PubMed Central
Google Scholar
Jiang H, Chen M, Li T, Liu H, Gong Y, Li M. Molecular characterization of Streptococcus agalactiae causing community- and hospital-acquired infections in shanghai, China. Front Microbiol. 2016;7:1308.
PubMed
PubMed Central
Google Scholar
Korir ML, Laut C, Rogers LM, Plemmons JA, Aronoff DM, Manning SD. Differing mechanisms of surviving phagosomal stress among group B Streptococcus strains of varying genotypes. Virulence. 2017;8(6):924–37.
Article
CAS
PubMed
Google Scholar
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F, Locati M. Negative regulation of toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci U S A. 2013;110(28):11499–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cobos Jimenez V, Willemsen AM, Bradley EJ, Baas F, van Kampen AH, Kootstra NA. Next-generation sequencing of microRNAs in primary human polarized macrophages. Genomics data. 2014;2:181–3.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang M, Zhong M, Suo Q, Lv K. Expression profiles of miRNAs in polarized macrophages. Int J Mol Med. 2013;31(4):797–802.
Article
CAS
PubMed
Google Scholar
Graff JW, Dickson AM, Clay G, McCaffrey AP, Wilson ME. Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem. 2012;287(26):21816–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H, et al. A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation. 2012;125(23):2892–903.
Article
CAS
PubMed
Google Scholar
Banerjee S, Cui H, Xie N, Tan Z, Yang S, Icyuz M, et al. miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem. 2013;288(49):35428–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Furuse Y, Finethy R, Saka HA, Xet-Mull AM, Sisk DM, Smith KL, et al. Search for microRNAs expressed by intracellular bacterial pathogens in infected mammalian cells. PLoS One. 2014;9(9):e106434.
Article
PubMed
PubMed Central
Google Scholar
Shmaryahu A, Carrasco M, Valenzuela PD. Prediction of bacterial microRNAs and possible targets in human cell transcriptome. J Microbiol. 2014;52(6):482–9.
Article
CAS
PubMed
Google Scholar
Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol. 2013;14(3):205–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology. 2011;411(2):325–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science (New York, NY). 2013;342(6154):118–23.
Article
CAS
Google Scholar
Zhang C, Huys A, Thibault PA, Wilson JA. Requirements for human dicer and TRBP in microRNA-122 regulation of HCV translation and RNA abundance. Virology. 2012;433(2):479–88.
Article
CAS
PubMed
Google Scholar
Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, et al. Effects of dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 2006;34(17):4801–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baer C, Squadrito ML, Laoui D, Thompson D, Hansen SK, Kiialainen A, et al. Suppression of microRNA activity amplifies IFN-gamma-induced macrophage activation and promotes anti-tumour immunity. Nat Cell Biol. 2016;18(7):790–802.
Article
CAS
PubMed
Google Scholar
Ozeri V, Rosenshine I, Ben-Ze'Ev A, Bokoch GM, Jou TS, Hanski E. De novo formation of focal complex-like structures in host cells by invading streptococci. Mol Microbiol. 2001;41(3):561–73.
Article
CAS
PubMed
Google Scholar
Agerer F, Lux S, Michel A, Rohde M, Ohlsen K, Hauck CR. Cellular invasion by Staphylococcus aureus reveals a functional link between focal adhesion kinase and cortactin in integrin-mediated internalisation. J Cell Sci. 2005;118(Pt 10):2189–200.
Article
CAS
PubMed
Google Scholar
Plancon L, Du Merle L, Le Friec S, Gounon P, Jouve M, Guignot J, et al. Recognition of the cellular beta1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell Microbiol. 2003;5(10):681–93.
Article
CAS
PubMed
Google Scholar
Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, et al. Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci U S A. 2010;107(6):2580–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reyes-Garcia MG, Hernandez-Hernandez F, Hernandez-Tellez B, Garcia-Tamayo F. GABA (a) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol. 2007;188(1–2):64–8.
Article
CAS
PubMed
Google Scholar
Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL. Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. J Immunol. 2004;173(8):5298–304.
Article
CAS
PubMed
Google Scholar
Alam S, Laughton DL, Walding A, Wolstenholme AJ. Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol. 2006;43(9):1432–42.
Article
CAS
PubMed
Google Scholar
Tian J, Chau C, Hales TG, Kaufman DL. GABA(a) receptors mediate inhibition of T cell responses. J Neuroimmunol. 1999;96(1):21–8.
Article
CAS
PubMed
Google Scholar
Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A. 2011;108(42):17408–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothchild AC, Sissons JR, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113(41):E6172–e81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verschoor CP, Dorrington MG, Novakowski KE, Kaiser J, Radford K, Nair P, et al. MicroRNA-155 is required for clearance of Streptococcus pneumoniae from the nasopharynx. Infect Immun. 2014;82(11):4824–33.
Article
PubMed
PubMed Central
Google Scholar
Aziz F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell Immunol. 2016;303:1–6.
Article
CAS
PubMed
Google Scholar
Naeem A, Zhong K, Moisa SJ, Drackley JK, Moyes KM, Loor JJ. Bioinformatics analysis of microRNA and putative target genes in bovine mammary tissue infected with Streptococcus uberis. J Dairy Sci. 2012;95(11):6397–408.
Article
CAS
PubMed
Google Scholar
Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, et al. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis. 2014;209(12):2000–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo K. Signaling cross talk between TGF-beta/Smad and other signaling pathways. Cold Spring Harb Perspect Biol. 2017;9:1.
Article
Google Scholar
Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285(28):21496–507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hotchkiss RS, Nicholson DW. Apoptosis and caspases regulate death and inflammation in sepsis. Nat Rev Immunol. 2006;6(11):813–22.
Article
CAS
PubMed
Google Scholar
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4(3)
Sun L, Ye RD. Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin. 2012;33(3):342–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, et al. miR-2478 inhibits TGFbeta1 expression by targeting the transcriptional activation region downstream of the TGFbeta1 promoter in dairy goats. Sci Rep. 2017;7:42627.
Article
CAS
PubMed
PubMed Central
Google Scholar
Romao JM, Jin W, He M, McAllister T, Guan le L. MicroRNAs in bovine adipogenesis: genomic context, expression and function. BMC Genomics. 2014;15:137.
Article
PubMed
PubMed Central
Google Scholar
Muroya S, Shibata M, Hayashi M, Oe M, Ojima K. Differences in circulating microRNAs between grazing and grain-fed wagyu cattle are associated with altered expression of intramuscular microRNA, the potential target PTEN, and Lipogenic genes. PLoS One. 2016;11(9):e0162496.
Article
PubMed
PubMed Central
Google Scholar
Wang R, Zhang YY, Lu JS, Xia BH, Yang ZX, Zhu XD, et al. The highly pathogenic H5N1 influenza a virus down-regulated several cellular MicroRNAs which target viral genome. J Cell Mol Med. 2017;21(11):3076–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XG, Huang JM, Feng MY, Ju ZH, Wang CF, Yang GW, et al. Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows. Anim Genet. 2014;45(1):28–37.
Article
PubMed
Google Scholar
Schurch NJ, Schofield P, Gierlinski M, Cole C, Sherstnev A, Singh V, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA (New York, NY). 2016;22(6):839–51.
Article
CAS
Google Scholar
Vegh P, Foroushani AB, Magee DA, McCabe MS, Browne JA, Nalpas NC, et al. Profiling microRNA expression in bovine alveolar macrophages using RNA-seq. Vet Immunol Immunopathol. 2013;155(4):238–44.
Article
CAS
PubMed
Google Scholar