LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nat Rev Microbiol. 2015;13:191–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fàbrega A, Vila J. Salmonella enterica serovar typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev. 2013;26:308–41.
Article
PubMed
PubMed Central
Google Scholar
de Jong HK, Parry CM, van der Poll T, Wiersinga WJ. Host-pathogen interaction in invasive salmonellosis. PLoS Pathog. 2012;8:1–9.
Article
Google Scholar
Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, et al. The global burden of Nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010;50:882–9.
Article
PubMed
Google Scholar
Roy M-F, Malo D. Genetic regulation of host responses to Salmonella infection in mice. Genes Immun. 2002;3:381–93.
Article
CAS
PubMed
Google Scholar
O’Brien AD, Taylor BA, Rosenstreich DL. Genetic control of natural resistance to Salmonella typhimurium in mice during the late phase of infection. J Immunol. 1984;133
Santos RL, Zhang S, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ. Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect. 3:1335–44.
Robson HG, Vas SI. Resistance of inbred mice to Salmonella typhimurium. J Infect Dis. 1972;126:378–86.
Article
CAS
PubMed
Google Scholar
Sebastiani G, Olien L, Gauthier S, Skamene E, Morgan K, Gros P, et al. Mapping of genetic modulators of natural resistance to infection with Salmonella typhimurium in wild-derived mice. Genomics. 1998;47:180–6.
Article
CAS
PubMed
Google Scholar
Roy MF, Riendeau N, Bedard C, Helie P, Min-Oo G, Turcotte K, et al. Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. J Exp Med. 2007;204:2949–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richer E, Yuki KE, Dauphinee SM, Larivière L, Paquet M, Malo D. Impact of Usp18 and IFN signaling in Salmonella-induced typhlitis. Genes Immun. 2011;12:531–43.
Article
CAS
PubMed
Google Scholar
Vidal S, Tremblay ML, Govoni G, Gauthier S, Sebastiani G, Malo D, et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med. 1995;182:655–66.
Article
CAS
PubMed
Google Scholar
Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.
Article
CAS
PubMed
Google Scholar
Rawlings DJ, Saffran DC, Tsukada S, Largaespada DA, Grimaldi JC, Cohen L, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993;261:358–61.
Article
CAS
PubMed
Google Scholar
Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med. 1999;189:615–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu J, Bumstead N, Barrow P, Sebastiani G, Olien L, Morgan K, et al. Resistance to salmonellosis in the chicken is linked to NRAMP1 and TNC. Genome Res. 1997;7:693–704.
Article
CAS
PubMed
Google Scholar
Leveque G, Forgetta V, Morroll S, Smith AL, Bumstead N, Barrow P, et al. Allelic variation in TLR4 is linked to susceptibility to Salmonella enterica serovar typhimurium infection in chickens. Infect Immun. 2003;71:1116–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vidal SM, Malo D, Marquis JF, Gros P. Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol. 2008;26:81–132.
Article
CAS
PubMed
Google Scholar
Roy MF, Riendeau N, Loredo-Osti JC, Malo D. Complexity in the host response to Salmonella typhimurium infection in AcB and BcA recombinant congenic strains. Genes Immun. 2006;7:655–66.
Article
CAS
PubMed
Google Scholar
Flint J, Valdar W, Shifman S, Mott R. Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet. 2005;6:271–86.
Article
CAS
PubMed
Google Scholar
Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, et al. The collaborative cross, a community resource for the genetic analysis of complex traits. Nat Genet. 2004;36:1133–7.
Article
CAS
PubMed
Google Scholar
Morgan AP, Welsh CE. Informatics resources for the collaborative cross and related mouse populations. Mamm Genome. 2015;26:521–39.
Article
PubMed
PubMed Central
Google Scholar
Threadgill DW, Miller DR, G a C, de Villena FP-M. The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J. 2011;52:24–31.
Article
CAS
PubMed
Google Scholar
Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L, Threadgill DW. The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: implications for QTL discovery and systems genetics. Mamm Genome 2007;18:473–481.
Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo R a, Baric RS, et al. Genetic analysis of complex traits in the emerging collaborative cross. Genome Res 2011;21:1213–1222.
Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, Beckmann MA, et al. Genetic analysis in the collaborative cross breeding population. Genome Res. 2011;21:1223–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Welsh CE, Miller DR, Manly KF, Wang J, McMillan L, Morahan G, et al. Status and access to the collaborative cross population. Mamm Genome. 2012;23:706–12.
Article
PubMed
PubMed Central
Google Scholar
Iraqi FA, Churchill G, Mott R. The collaborative cross, developing a resource for mammalian systems genetics: a status report of the Wellcome Trust cohort. Mamm Genome. 2008;19:379–81.
Article
PubMed
Google Scholar
Morahan G, Balmer L, Monley D. Establishment of “the gene mine”: a resource for rapid identification of complex trait genes. Mamm Genome. 2008;19:390–3.
Article
PubMed
Google Scholar
Chesler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BL, Philip VM, et al. The collaborative cross at oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome. 2008;19:382–9.
Article
PubMed
PubMed Central
Google Scholar
Collaborative Cross Consortium CC. The genome architecture of the collaborative cross mouse genetic reference population. Genetics. 2012;190:389–401.
Article
Google Scholar
Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, et al. A customized and versatile high-density genotyping array for the mouse. Nat Methods. 2009;6:663–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci U S A. 2000;97:12649–54.
Article
PubMed
PubMed Central
Google Scholar
Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L. Pardo-Manuel de Villena F, et al. collaborative cross mice and their power to map host susceptibility to aspergillus fumigatus infection. Genome Res. 2011;21:1239–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durrant C, Mott R. Bayesian quantitative trait locus mapping using inferred haplotypes. Genetics. 2010;184:839–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yalcin B, Flint J, Mott R. Using Progenitor Strain Information to Identify Quantitative Trait Nucleotides in Outbred Mice. Genetics. 2005;681 October:673–681.
MGI-Mouse Genome Informatics-The international database resource for the laboratory mouse. http://www.informatics.jax.org/. Accessed 15 Jun 2017.
Carlson M, Maintainer B. TxDb.Mmusculus.UCSC.mm9.knownGene: Annotation package for TxDb object(s). 2015. R package version 3.2.2. DOIhttps://doi.org/10.18129/B9.bioc.TxDb.Mmusculus.UCSC.mm9.knownGene
Immunological Genome Project-ImmGen. https://www.immgen.org/. Accessed 15 Jun 2017.
Ensembl genome browser. http://www.ensembl.org/index.html. Accessed 15 Jun 2017.
IMPC | International Mouse Phenotyping Consortium. http://www.mousephenotype.org/. Accessed 15 Jun 2017.
Vered K, Durrant C, Mott R, Iraqi FA. Susceptibility to klebsiella pneumonaie infection in collaborative cross mice is a complex trait controlled by at least three loci acting at different time points. BMC Genomics. 2014;15:865.
Article
PubMed
PubMed Central
Google Scholar
Sanger Mouse SnpViewer. http://www.sanger.ac.uk/sanger/Mouse_SnpViewer/rel-1505. Accessed 15 Jun 2017.
O’Brien AD, Rosenstreich DL, Scher I, Campbell GH, MacDermott RP, Formal SB. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol. 1980;124
Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, et al. Cutting edge: toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol. 1999;162:3749–52.
CAS
PubMed
Google Scholar
Yamakawa T, Tanaka SI, Yamakawa Y, Isoda F, Kawamoto S, Fukushima J, et al. Genetic control of in vivo tumor necrosis factor production in mice. Clin Immunol Immunopathol. 1996;79:256–62.
Article
CAS
PubMed
Google Scholar
Sebastiani G, Blais V, Sancho V, Vogel SN, Stevenson MM, Gros P, et al. Host immune response to Salmonella enterica serovar typhimurium infection in mice derived from wild strains. Infect Immun. 2002;70:1997–2009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sancho-Shimizu V, Khan R, Mostowy S, Larivière L, Wilkinson R, Riendeau N, et al. Molecular genetic analysis of two loci (Ity2 and Ity3) involved in the host response to infection with Salmonella typhimurium using congenic mice and expression profiling. Genetics. 2007;177:1125–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Borrego A, Peters LC, Jensen JR, Ribeiro OG, Koury Cabrera WH, Starobinas N, et al. Genetic determinants of acute inflammation regulate Salmonella infection and modulate Slc11a1 gene (formerly Nramp1) effects in selected mouse lines. Microbes Infect. 2006;8:2766–71.
Article
CAS
PubMed
Google Scholar
de Souza CM, Morel L, Cabrera WH, Starobinas N, Ribeiro OG, Siqueira M, et al. Quantitative trait loci in chromosomes 3, 8, and 9 regulate antibody production against Salmonella flagellar antigens in the mouse. Mamm Genome. 2004;15:630–6.
Article
CAS
PubMed
Google Scholar
Trezena AG, Souza CM, Borrego A, Massa S, Siqueira M, De Franco M, et al. Co-localization of quantitative trait loci regulating resistance to Salmonella typhimurium infection and specific antibody production phenotypes. Microbes Infect. 2002;4:1409–15.
Article
CAS
PubMed
Google Scholar
Waning DL, Li B, Jia N, Naaldijk Y, Goebel WS, Hogeneseh H, et al. Cul4A is required for hematopoietic cell viability and its deficiency leads to apoptosis. Blood. 2008;112:320–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saftig P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat Rev Mol Cell Biol. 2009;10:623–35.
Article
CAS
PubMed
Google Scholar
Cohnen A, Chiang SC, Stojanovic A, Schmidt H, Claus M, Saftig P, et al. Surface CD107a / LAMP-1 protects natural killer cells from degranulation-associated damage. Immunobiology. 2013;122(8):1411.
CAS
Google Scholar
Nakaya T, Kuwahara K, Ohta K, Kitabatake M, Toda T, Takeda N, et al. Critical role of Pcid2 in B cell survival through the regulation of MAD2 expression. J Immunol. 2010;185:5180–7.
Article
CAS
PubMed
Google Scholar
Abernathy J, Corkill C, Hinojosa C, Li X, Zhou H. Deletions in the pyruvate pathway of Salmonella typhimurium alter SPI1-mediated gene expression and infectivity. J Anim Sci Biotechnol. 2013;4:5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shorter JR, Odet F, Aylor DL, Pan W, Kao C-Y, Fu C-P, et al. Male infertility is responsible for nearly half of the extinction observed in the mouse collaborative cross. Genetics. 2017;206:557–72.
Article
PubMed
Google Scholar
Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, et al. Genomes of the mouse collaborative cross. Genetics. 2017;206:537–56.
Article
PubMed
PubMed Central
Google Scholar