Jiang L, Liu J, Sun D, Ma P, Ding X, Yu Y, Zhang Q. Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One. 2010;5(10):e13661.
Article
Google Scholar
Goddard ME, Hayes BJ. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat Rev Genet. 2009;10(6):381–91.
Article
CAS
Google Scholar
Song LJ, Wu JF, Yang Guo L, Zhang SJ, Wu JJ. Investigation of transferability of BovineSNP50 BeadChip from cattle to;water buffalo for genome wide association study. Mol Biol Rep. 2013;40(2):743–50.
Article
Google Scholar
de Camargo GM, Aspilcueta-Borquis RR, Fortes MR, Porto-Neto R, Cardoso DF, Santos DJ, Lehnert SA, Reverter A, Moore SS, Tonhati H. Prospecting major genes in dairy buffaloes. BMC Genomics. 2015;16(1):872.
Article
CAS
Google Scholar
Leiserson MD, Eldridge JV, Ramachandran S, Raphael BJ. Network analysis of GWAS data. Curr Opin Genet Dev. 2013;23(6):602–10.
Article
CAS
Google Scholar
Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature. 2010;466(7307):714–9.
Article
CAS
Google Scholar
Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501(7468):506–11.
Article
CAS
Google Scholar
Sirard MA, Fournier É, Dufort I, Gilbert I, Robert C. 77 Transcriptome profiling in oocytes-embryo and granulosa cells from bovine. Reprod Fertil Dev. 2016;29(1):146–146.
Li J, Li Z, Liu S, Zia R, Liang A, Yang L. Transcriptome studies of granulosa cells at different stages of ovarian follicular development in buffalo. Anim Reprod Sci. 2017;187:181–92.
Article
CAS
Google Scholar
Fang L, Sahana G, Su G, Yu Y, Zhang S, Lund MS, Sã Rensen P. Integrating sequence-based GWAS and RNA-Seq provides novel insights into the genetic basis of mastitis and Milk production in dairy cattle. Sci Rep. 2017;7:45560.
Article
CAS
Google Scholar
Calabrese GM, Mesner LD, Stains JP, Tommasini SM, Horowitz MC, Rosen CJ, Farber CR. Integrating GWAS and co-expression network data identifies causal bone mineral density genes SPTBN1 and MARK3 and an osteoblast functional module. Cell Systems. 2017;4(1):46–59.
Article
Google Scholar
Calabrese G, Bennett BJ, Orozco L, Kang HM, Eskin E, Dombret C, De Backer O, Lusis AJ, Farber CR. Systems genetic analysis of osteoblast-lineage cells. PLoS Genet. 2012;8(12):e1003150.
Article
CAS
Google Scholar
Li J, Liu X, Yang J, Wang H, Jiang J, Liu L, He S, Ding X, Liu J, Zhang Q. Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits. BMC Genomics 15,1(2014-12-15). 2014;15(1):1–9.
Article
Google Scholar
Gao H, Qi YU. Primordial follicle assembly and development. J Reprod Med. 2007;16(6):453–456.
Ginther OJ, Beg MA, Donadeu FX, Bergfelt DR. Mechanism of follicle deviation in monovular farm species. Anim Reprod Sci. 2003;78(3–4):239–57.
Article
CAS
Google Scholar
Austin EJ, Mihm M, Ryan MP, Williams DH, Roche JF. Effect of duration of dominance of the ovulatory follicle on onset of estrus and fertility in heifers. J Anim Sci. 1999;77(8):2219–26.
Article
CAS
Google Scholar
Scaramuzzi RJ, Baird DT, Campbell BK, Driancourt MA, Dupont J, Fortune JE, Gilchrist RB, Martin GB, McNatty KP, McNeilly AS, et al. Regulation of folliculogenesis and the determination of ovulation rate in ruminants. Reprod Fertil Dev. 2011;23(3):444–67.
Article
CAS
Google Scholar
Liu JJ, Liang AX, Campanile G, Plastow G, Zhang C, Wang Z, Salzano A, Gasparrini B, Cassandro M, Yang LG. Genome-wide association studies to identify quantitative trait loci affecting milk production traits in water buffalo. J Dairy Sci. 2018;101(1):433–44.
Article
CAS
Google Scholar
Natalia I, Bermal CR, Nascimento TAP, Braga MAF, Oliveira SRMD, Mortati DM, Braga BA, Fernando B, Roberto C. Genome-wide association study for Indicator traits of sexual precocity in Nellore cattle. PLoS One. 2016;11(8):e0159502.
Article
Google Scholar
Pearson TA, Manolio TA. How to interpret a genome-wide association study. Jama. 2008;299(11):1335–1344.
Article
CAS
Google Scholar
McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet. 2008;17(R2):R156–65.
Article
CAS
Google Scholar
Refsdal AO. To treat or not to treat: a proper use of hormones and antibiotics. Anim Reprod Sci. 2000;60(60–61):109–19.
Article
Google Scholar
Li Z, Ma X, Xuan J, Wang H, Yuan Z, Wu M, Liu R, Zhu C, Wei C, Zhao F. Identification of MEF2B and TRHDE gene polymorphisms related to growth traits in a new Ujumqin sheep population. PLoS One. 2016;11(7):e0159504.
Article
Google Scholar
Khaitan D, Sankpal UT, Weksler B, Meister EA, Romero IA, Couraud PO, Ningaraj SN. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain. BMC Cancer 9,1(2009-07-29). 2009;9(1):258.
Article
Google Scholar
Peng L, Zhang SD, Yuen HF, Mccrudden CM, Wen Q, Chan KW, Hang FK. Identification of TWIST-interacting genes in prostate cancer. Sci China Life Sci. 2017;60(4):386–96.
Article
CAS
Google Scholar
An CH, Je EM, Yoo NJ, Lee SH. Frameshift mutations of cadherin genes DCHS2, CDH10 and CDH24 genes in gastric and colorectal cancers with high microsatellite instability. Pathol Oncol Res. 2015;21(1):181–5.
Article
CAS
Google Scholar
Işık E, Beck PP, Campi I, Özon A, Alikaşifoğlu A, Gönç N, Kandemir N. Thyroid hormone resistance: a novel mutation in thyroid hormone receptor beta (THRB) gene - case report. Turk J Pediatr. 2013;55(3):322–7.
Rodriguez-Castelãn J, Anaya-Hernãndez A, Mendez-Tepepa M, Martinez-Gomez M, Castelãn F, Cuevas-Romero E. Distribution of thyroid hormone and thyrotropin receptors in reproductive tissues of adult female rabbits. Endocr Res Commun. 2016;42(1):59–70.
Article
Google Scholar
Mann T. Secretory function of the prostate, seminal vesicle and other male accessory organs of reproduction. J Reprod Fertil. 1974;37(1):179–88.
Article
CAS
Google Scholar
Barrett P, Ebling FJP, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology. 2007;148(8):3608–17.
Article
CAS
Google Scholar
Christ GJ, Andersson KE, Williams K, Zhao W, D'Agostino R Jr, Kaplan J, Aboushwareb T, Yoo J, Calenda G, Davies KP, et al. Smooth-muscle-specific gene transfer with the human maxi-k channel improves erectile function and enhances sexual behavior in atherosclerotic cynomolgus monkeys. Eur Urol. 2009;56(6):1055–66.
Article
CAS
Google Scholar
Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity (Edinb). 2016;116(3):255–64.
Article
CAS
Google Scholar
Freudenberg J, Lee HS Fau, Han BG, Shin HD, Kang YM, Sung YK, Shim SC, Choi CB, Lee AT, Gregersen PK, Bae SC et al: Genome-wide association study of rheumatoid arthritis in Koreans: population-specific loci as well as overlap with European susceptibility loci. Arthritis Rheumatol. 2014;63(4):884–893.
Article
CAS
Google Scholar
Gibbons JR, Wiltbank MC, Ginther OJ. Relationship between follicular development and the decline in the follicle-stimulating hormone surge in heifers. Biol Reprod. 1999;60(1):72–77.
Article
CAS
Google Scholar
Morfeld KA, Brown JL. Ovarian acyclicity in zoo African elephants (Loxodonta africana) is associated with high body condition scores and elevated serum insulin and leptin. Reprod Fertil Dev. 2014;28(5):640–7.
Article
CAS
Google Scholar
Watanabe Y, Takeuchi K, Onaga SH, Sato M, Tsujita M, Abe M, Natsume R, Li M, Furuichi T, Saeki M. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J. 2010;432(Pt 1):47–55.
Article
CAS
Google Scholar
Shahi P, Slorach EM, Wang CY, Chou J, Lu A, Ruderisch A, Werb Z. The transcriptional repressor ZNF503/Zeppo2 promotes mammary epithelial cell proliferation and enhances cell invasion. J Biol Chem. 2015;290(6):3803–13.
Article
CAS
Google Scholar
Chang SL, Liu YC, Chen SY, Huang TH, Liu PT, Liu FC. Identification of two evolutionarily conserved 5′ cis-elements involved in regulating spatiotemporal expression of Nolz-1 during mouse embryogenesis. PLoS One. 2013;8(1):e54485.
Article
CAS
Google Scholar
Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, Bjonnes A, Broer L, Dunger DB, Halldorsson BV, et al. Causal mechanisms and balancing selection inferred from genetic associations with polycystic ovary syndrome. Nat Commun. 2015;6:8464.
Article
CAS
Google Scholar
Makina SO, Muchadeyi FC, van Marle-Koster E, Taylor JF, Makgahlela ML, Maiwashe A. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genet Sel Evol. 2015;47(1):92.
Article
Google Scholar
Wang L, Wang Y. Molecular characterization, expression patterns and subcellular localization of Myotrophin (MTPN) gene in porcine skeletal muscle. Mol Biol Rep. 2012;39(3):2733–8.
Article
CAS
Google Scholar
Kato MV. A secreted tumor-suppressor, mac25, with activin-binding activity. Mol Med. 2000;6(2):126–35.
Article
CAS
Google Scholar
Ueno N, Ling N, Ying SY, Esch F, Shimasaki S, Guillemin R. Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc Natl Acad Sci U S A. 1987;84(23):8282–6.
Article
CAS
Google Scholar
Robertson DM, Klein R, de Vos FL, Mclachlan RI, Wettenhall RE, Hearn MT, Burger HG, de Kretser DM. The isolation of polypeptides with FSH suppressing activity from bovine follicular fluid which are structurally different to inhibin. Biochem Biophys Res Commun. 1987;149(2):744–9.
Article
CAS
Google Scholar
Jorgez CJ, Klysik M, Jamin SP, Behringer RR, Matzuk MM. Granulosa cell-specific inactivation of follistatin causes female fertility defects. Mol Endocrinol. 2004;18(4):953–67.
Article
CAS
Google Scholar
Muttukrishna S, Tannetta D, Groome N, Sargent I. Activin and follistatin in female reproduction. Mol Cell Endocrinol. 2004;225(1–2):45–56.
Article
CAS
Google Scholar
Wandji SA, Gadsby JE, Barber JA, Hammond JM. Messeger ribonucleic acids for IGFBP-7 and connective tissue growth factor (CTGF) are inversely regulated during folliculogenesis and early luteogenesis. Endocrinology. 2000;141(7):2648–57.
Article
CAS
Google Scholar
Casey OM, Fitzpatrick R, Mcinerney JO, Morris DG, Powell R, Sreenan JM. Analysis of gene expression in the bovine corpus luteum through generation and characterisation of 960 ESTs. Biochim Biophys Acta Gene Struct Expr. 2004;1679(1):10–7.
Article
CAS
Google Scholar
Meo GPD, Perucatti A, Schibler L, Incarnato D, Ferrara L, Cribiu EP, Iannuzzi L. Thirteen type I loci from HSA4q, HSA6p, HSA7q and HSA12q were comparatively FISH-mapped in four river buffalo and sheep chromosomes. Cytogenet Genome Res. 2000;90(1–2):102–5.
Article
Google Scholar
Di MG, Perucatti A, Uboldi C, Roperto S, Incarnato D, Roperto F, Williams J, Eggen A, Ferretti L, Iannuzzi L. Comparative mapping of the fragile histidine triad (FHIT) gene in cattle, river buffalo, sheep and goat by FISH and assignment to BTA22 by RH-mapping: a comparison with HSA3. Anim Genet. 2005;36(4):363–4.
Article
Google Scholar
Ianella P, Venancio LP, Stafuzza NB, Miziara MN, Agarwala R, Schäffer AA, Riggs PK, Womack JE, Amaral ME. First radiation hybrid map of the river buffalo X chromosome (BBUX) and comparison with BTAX. Anim Genet. 2010;39(2):196–200.
Article
Google Scholar
Tantia MS, Galvão SR, Caetano AR, Paola M, Miziara MN, Aravind KM, Boby M, Pardha SG, Satish K, Aparna P. A first generation whole genome RH map of the river buffalo with comparison to domestic cattle. BMC Genomics. 2008;9(1):631.
Article
Google Scholar
El-Halawany N, Abdel-Shafy H, Shawky AEMA, Abdel-Latif MA, Al-Tohamy AFM, El-Moneim OMA. Genome-wide association study for milk production in Egyptian buffalo. Int Symp Anim Funct Gen. 2017;2017:10–6.
Google Scholar
Riaz H, Dong P, Shahzad M, Yang L. Constitutive and follicle-stimulating hormone-induced action of somatostatin receptor-2 on regulation of apoptosis and steroidogenesis in bovine granulosa cells. J Steroid Biochem Mol Biol. 2014;141(1):150–9.
Article
CAS
Google Scholar