Waltzek TB, Kelley GO, Alfaro ME, Kurobe T, Davison AJ, Hedrick RP. Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Org. 2009;84:179–94.
Article
CAS
Google Scholar
Antychowicz J, Reichert M, Matras M, Bergmann SM, Haenen O. Epidemiology, pathogenicity and molecular biology of koi herpesvirus isolated in Poland. Bull Vet Inst Pulawy. 2005;49(4):367–73.
Google Scholar
Haenen OLM, Way K, Bergmann SM, Ariel E. The emergence of koi herpesvirus and its significance to European aquaculture. Bull Eur Assoc Fish Pathol. 2004;24:293–307.
Google Scholar
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Gillet NA, Hamaidia M, de Brogniez A, Gutiérrez G, Renotte N, Reichert M, Trono K, Willems L. Bovine leukemia virus small noncoding RNAs are functional elements that regulate replication and contribute to oncogenesis in vivo. PLoS Pathog. 2016;12(4):1005588.
Article
Google Scholar
Qiu J, Thorley-Lawson DA. EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells. Proc Natl Acad Sci U S A. 2014;111(30):11157–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poole E, McGregor Dallas SR, Colston J, Joseph RS, Sinclair J. Virally induced changes in cellular microRNAs maintain latency of human cytomegalovirus in CD34+ progenitors. J Gen Virol. 2011;92(7):1539–49.
Article
CAS
PubMed
Google Scholar
O'Connor CM, Vanicek J, Murphy EA. Host microRNA regulation of human cytomegalovirus immediate early protein translation promotes viral latency. J Virol. 2014;88(10):5524–32.
Article
PubMed
PubMed Central
Google Scholar
Donohoe OH, Henshilwood K, Way K, Hakimjavadi R, Stone DM, Identification WD. Characterization of cyprinid Herpesvirus-3 (CyHV-3) encoded MicroRNAs. PLoS One. 2015;10(4):e012543424.
Article
Google Scholar
Lee X, Weng S, Dong G, Zhang H, Zeng J, He J, Dong C. Identification and expression analysis of cellular and viral microRNAs in CyHV3-infected KCF-1 cells. Gene. 2016;592(1):154–63.
Article
CAS
PubMed
Google Scholar
Xu JR, Bently J, Beck L, Reed A, Miller-Morgan T, Heidel JR, Kent ML, Rockey DD, Jin L. Analysis of koi herpesvirus latency in wild common carp and ornamental koi in Oregon, USA. J Virol Methods. 2013;187(2):372–9.
Article
CAS
PubMed
Google Scholar
Eide KE, Miller-Morgan T, Heidel JR, Kent ML, Bildfell RJ, Lapatra S, Watson G, Jin L. Investigation of koi herpesvirus latency in koi. J Virol. 2011;85(10):4954–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uchii K, Minamoto T, Honjo MN, Kawabata Z. Seasonal reactivation enables cyprinid herpesvirus 3 to persist in a wild host population. FEMS Microbiol Ecol. 2014;87(2):536–42.
Article
CAS
PubMed
Google Scholar
Gilad O, Yun S, Zagmutt-Vergara FJ, Leutenegger CM, Bercovier H, Hedrick RP. Concentrations of a koi herpesvirus (KHV) in tissues of experimentally infected Cyprinus carpio koi as assessed by real-time TaqMan PCR. Dis Aquat Org. 2004;60(3):179–87.
Article
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quinlan AR. BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics. 2014;47:11 (12)11–34.
Article
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Masoudi-Nejad A, Tonomura K, Kawashima S, Moriya Y, Suzuki M, Itoh M, Kanehisa M, Endo T, Goto S. EGassembler: online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res. 2006;34:459–62.
Article
Google Scholar
Lukasik A, Wojcikowski M, Zielenkiewicz P. Tools4miRs - one place to gather all the tools for miRNA analysis. Bioinformatics. 2016;32(17):2722–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278–84.
Article
CAS
PubMed
Google Scholar
Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loher P, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 2012;28(24):3322–3.
Article
CAS
PubMed
Google Scholar
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human MicroRNA targets. PLoS Biol. 2004;2(11):e363.
Article
PubMed
PubMed Central
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:182–5.
Article
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang Y, Gao XC, Ren HT, Xiong JL, Sun XH. Characterization of conserved and novel miRNAs using deep sequencing and prediction of miRNA targets in crucian carp (Carassius auratus). Gene. 2017;635:61–8.
Article
CAS
PubMed
Google Scholar
Tran Vdu T, Tempel S, Zerath B, Zehraoui F, Tahi F. miRBoost: boosting support vector machines for microRNA precursor classification. RNA. 2015;21(5):775–85.
Article
PubMed
Google Scholar
Tav C, Tempel S, Poligny L, Tahi F. miRNAFold: a web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res. 2016;44(W1):181–4.
Article
Google Scholar
Stocks MB, Moxon S, Mapleson D, Woolfenden HC, Mohorianu I, Folkes L, Schwach F, Dalmay T, Moulton V. The UEA sRNA workbench: a suite of tools for analysing and visualizing next generation sequencing microRNA and small RNA datasets. Bioinformatics. 2012;28(15):2059–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chi W, Tong C, Gan X, He S. Characterization and comparative profiling of MiRNA transcriptomes in bighead carp and silver carp. PLoS One. 2011;6(8):e23549.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feng Y, Ma J, Xiang R, Li X. Alterations in microRNA expression in the tissues of silver carp (Hypophthalmichthys molitrix) following microcystin-LR exposure. Toxicon. 2017;128:15–22.
Article
CAS
PubMed
Google Scholar
Gong W, Huang Y, Xie J, Wang G, Yu D, Sun X. Genome-wide identification and characterization of conserved and novel microRNAs in grass carp (Ctenopharyngodon idella) by deep sequencing. Comput Biol Chem. 2017;68:92–100.
Article
CAS
PubMed
Google Scholar
Tong C, Tian F, Zhang C, Zhao K. The microRNA repertoire of Tibetan naked carp Gymnocypris przewalskii: a case study in Schizothoracinae fish on the Tibetan plateau. PLoS One. 2017;12(3):e0174534.
Article
PubMed
PubMed Central
Google Scholar
Wang F, Jia Y, Wang P, Yang Q, Du Q, Chang Z. Identification and profiling of Cyprinus carpio microRNAs during ovary differentiation by deep sequencing. BMC Genomics. 2017;18(1):333.
Article
PubMed
PubMed Central
Google Scholar
Li G, Zhao Y, Wen L, Liu Z, Yan F, Gao C. Identification and characterization of microRNAs in the spleen of common carp immune organ. J Cell Biochem. 2014;115(10):1768–78.
Article
CAS
PubMed
Google Scholar
Zhu YP, Xue W, Wang JT, Wan YM, Wang SL, Xu P, Zhang Y, Li JT, Sun XW. Identification of common carp (Cyprinus carpio) microRNAs and microRNA-related SNPs. BMC Genomics. 2012;13:413.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao L, Lu H, Meng Q, Wang J, Wang W, Yang L, Lin L. Profilings of MicroRNAs in the liver of common carp (Cyprinus carpio) infected with Flavobacterium columnare. Int J Mol Sci. 2016;17(4):566.
Article
PubMed
PubMed Central
Google Scholar
Lin L, Chen S, Russell DS, Löhr CV, Milston-Clements R, Song T, Miller-Morgan T, Jin L. Analysis of stress factors associated with KHV reactivation and pathological effects from KHV reactivation. Virus Res. 2017;240:200–6.
Article
CAS
PubMed
Google Scholar
Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol. 2008;26(10):1179–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin J, Wang C, Liu J, Dahlgren RA, Ai W, Zeng A, Wang X, Wang H. Up-stream mechanisms for up-regulation of miR-125b from triclosan exposure to zebrafish (Danio rerio). Aquat Toxicol. 2017;193:256–67.
Article
CAS
PubMed
Google Scholar
Zhou W, Yuan J. Necroptosis in health and diseases. Semin Cell Dev Biol. 2014;35:14–56.
Article
PubMed
Google Scholar
Ritthipichai K, Nan Y, Bossis I, Zhang Y. Viral FLICE inhibitory protein of rhesus monkey rhadinovirus inhibits apoptosis by enhancing autophagosome formation. PLoS One. 2012;7(6):e39438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mocarski ES, Upton JW, Kaiser WJ. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nat Rev Immunol. 2011;12(2):79–88.
Article
PubMed
PubMed Central
Google Scholar
Guo H, Kaiser WJ, Mocarski ES. Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med Microbiol Immunol. 2015;204(3):439–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner MJ, Smiley JR. Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J Virol. 2011;85(6):2803–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Portis T, Longnecker R. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene. 2004;23(53):8619–28.
Article
CAS
PubMed
Google Scholar
McLean TI, Bachenheimer SL. Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J Virol. 1999;73(10):8415–26.
CAS
PubMed
PubMed Central
Google Scholar
Liu X, Cohen JI. Epstein Barr virus (EBV) tegument protein BGLF2 promotes EBV reactivation through activation of the p38 mitogen-activated protein kinase. J Virol. 2015;90(2):1129–38.
Article
PubMed
PubMed Central
Google Scholar
Qin D, Feng N, Fan W, Ma X, Yan Q, Lv Z, Zeng Y, Zhu J, Ch L. Activation of PI3K/AKT and ERK MAPK signal pathways is required for the induction of lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus by herpes simplex virus type 1. BMC Microbiol. 2011;11:240.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eliopoulos AG, Gallagher NJ, Blake SM, Dawson CW, Young LS. Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production J. Biol. Chem. 1999;274:16085–96.
Article
CAS
Google Scholar
Park GB, Kim YS, Lee HK, Song H, Cho DH, Lee WJ, Hur DY. Endoplasmic reticulum stress-mediated apoptosis of EBV-transformed B cells by cross-linking of CD70 is dependent upon generation of reactive oxygen species and activation of p38 MAPK and JNK pathway. J Immunol. 2010;185(12):7274–84.
Article
CAS
PubMed
Google Scholar
Sloan DD, Han JY, Sandifer TK, Stewart M, Hinz AJ, Yoon M, Johnson DC, Spear PG, Jerome KR. Inhibition of TCR signaling by herpes simplex virus. J Immunol. 2006;176(3):1825–33.
Article
CAS
PubMed
Google Scholar
York IA, Roop C, Andrews DW, Riddell SR, Graham FL, Johnson DC. A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8_ T lymphocytes. Cell. 1994;77:525–35.
Article
CAS
PubMed
Google Scholar
Reichert M, Borzym E, Matras M, Maj-Paluch J, Stachnik M, Palusinska M. Down-regulation of MHC class I mRNA expression in the course of KHV infection. J Fish Dis. 2016;39(10):1253–6.
Article
CAS
PubMed
Google Scholar
Rowe M, Glaunsinger B, van Leeuwen D, Zu J, Sweetman D, Ganem D, Middeldorp J, Wiertz EJ, Ressing ME. Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc. Natl. Acad. Sci. U.S.A. 2007;104:3366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smiley JR. Herpes simplex virus virion host shutoff protein:immune evasion mediated by a viral RNase? J Virol. 2004;78(3):1063–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed AN, Izume S, Dolan BP, LaPatra S, Kent M, Dong J, Jin L. Identification of B cells as a major site for cyprinid herpesvirus 3 latency. J Virol. 2014;88(16):9297–309.
Article
PubMed
PubMed Central
Google Scholar