Snell GD, Higgins GF. Alleles at the histocompatibility-2 locus in the mouse as determined by tumor transplantation. Genetics. 1951;36(3):306–10.
CAS
PubMed
PubMed Central
Google Scholar
Kaufman J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol. 2018;36:383–409.
Article
CAS
Google Scholar
Neefjes J, Jongsma MLM, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol. 2011;11(12):823–36.
Article
CAS
Google Scholar
Mellins ED, Stern LJ. HLA-DM and HLA-DO, key regulators of MHC-II processing and presentation. Curr Opin Immunol. 2014;26:115–22.
Article
CAS
Google Scholar
Qin J, Mamotte C, Cockett NE, Wetherall JD, Groth DM. A map of the class III region of the sheep major histocompatibilty complex. BMC Genomics. 2008;9:9.
Article
Google Scholar
Wedekind C, Seebeck T, Bettens F, Paepke AJ. MHC-dependent mate preferences in humans. Proc Biol Sci. 1995;260(1359):245–9.
Article
CAS
Google Scholar
Horton R, Wilming L, Rand V, Lovering RC, Bruford EA, Khodiyar VK, Lush MJ, Povey S, Talbot CC Jr, Wright MW, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5(12):889–99.
Article
CAS
Google Scholar
Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, Moeller A, Tampe R. Structure of the human MHC-I peptide-loading complex. Nature. 2017;551(7681):525–8.
Article
CAS
Google Scholar
Mata M, Travers PJ, Liu Q, Frankel FR, Paterson Y. The MHC class I-restricted immune response to HIV-gag in BALB/c mice selects a single epitope that does not have a predictable MHC-binding motif and binds to Kd through interactions between a glutamine at P3 and pocket D. J Immunol (Baltimore, Md : 1950). 1998;161(6):2985–93.
CAS
Google Scholar
Madeja Z, Yadi H, Apps R, Boulenouar S, Roper SJ, Gardner L, Moffett A, Colucci F, Hemberger M. Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth. Proc Natl Acad Sci U S A. 2011;108(10):4012–7.
Article
CAS
Google Scholar
Salomonsen J, Sorensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjodt K, Kaufman J. Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A. 2005;102(24):8668–73.
Article
CAS
Google Scholar
Walker BA, Hunt LG, Sowa AK, Skjodt K, Gobel TW, Lehner PJ, Kaufman J. The dominantly expressed class I molecule of the chicken MHC is explained by coevolution with the polymorphic peptide transporter (TAP) genes. Proc Natl Acad Sci U S A. 2011;108(20):8396–401.
Article
CAS
Google Scholar
Fan S, Wu Y, Wang S, Wang Z, Jiang B, Liu Y, Liang R, Zhou W, Zhang N, Xia C. Structural and biochemical analyses of swine major histocompatibility complex class I complexes and prediction of the epitope map of important influenza a virus strains. J Virol. 2016;90(15):6625–41.
Article
CAS
Google Scholar
Gao C, Quan J, Jiang X, Li C, Lu X, Chen H. Swine leukocyte antigen diversity in Canadian specific pathogen-free Yorkshire and landrace pigs. Front Immunol. 2017;8:282.
PubMed
PubMed Central
Google Scholar
Gustafson AL, Tallmadge RL, Ramlachan N, Miller D, Bird H, Antczak DF, Raudsepp T, Chowdhary BP, Skow LC. An ordered BAC contig map of the equine major histocompatibility complex. Cytogenet Genome Res. 2003;102(1–4):189–95.
Article
CAS
Google Scholar
Tallmadge RL, Lear TL, Antczak DF. Genomic characterization of MHC class I genes of the horse. Immunogenetics. 2005;57(10):763–74.
Article
CAS
Google Scholar
Viluma A, Mikko S, Hahn D, Skow L, Andersson G, Bergstrom TF. Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology. Sci Rep. 2017;7:45518.
Article
Google Scholar
Yuhki N, Beck T, Stephens R, Neelam B, O'Brien SJ. Comparative genomic structure of human, dog, and cat MHC: HLA, DLA, and FLA. J Hered. 2007;98(5):390–9.
Article
CAS
Google Scholar
Brinkmeyer-Langford CL, Childers CP, Fritz KL, Gustafson-Seabury AL, Cothran M, Raudsepp T, Womack JE, Skow LC. A high resolution RH map of the bovine major histocompatibility complex. BMC Genomics. 2009;10:182.
Article
Google Scholar
Wright H, Ballingall KT, Redmond J. The DY sub-region of the sheep MHC contains an a/B gene pair. Immunogenetics. 1994;40(3):230–4.
Article
CAS
Google Scholar
Grainger JR, Hall JA, Bouladoux N, Oldenhove G, Belkaid Y. Microbe-dendritic cell dialog controls regulatory T-cell fate. Immunol Rev. 2010;234(1):305–16.
Article
CAS
Google Scholar
Ballingall KT, Ellis SA, MacHugh ND, Archibald SD, McKeever DJ. The DY genes of the cattle MHC: expression and comparative analysis of an unusual class II MHC gene pair. Immunogenetics. 2004;55(11):748–55.
Article
CAS
Google Scholar
2017 I: The IUCN Red List of Threatened Species. Version 2017–3 <
http://www.iucnredlistorg
> Downloaded on 05 December 2017.
Tahas SA, Martin Jurado O, Hammer S, Arif A, Reese S, Hatt JM, Clauss M. Gross measurements of the digestive tract and visceral organs of Addax Antelope (Addax nasomaculatus) following a concentrate or forage feeding regime. Anat Histol Embryol. 2017.
Hummel J, Steuer P, Suedekum K-H, Hammer S, Hammer C, Streich WJ, Clauss M. Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus) - adaptations of a grazing desert ruminant. Comp Biochem Physiol A Mol Integr Physiol. 2008;149(2):142–9.
Article
Google Scholar
Boufana B, Said Y, Dhibi M, Craig PS, Lahmar S. Echinococcus granulosus sensu stricto (s.s.) from the critically endangered antelope Addax nasomaculatus in Tunisia. Acta Trop. 2015;152:112–5.
Article
Google Scholar
Heim BC, Ivy JA, Latch EK. A suite of microsatellite markers optimized for amplification of DNA from Addax (Addax nasomaculatus) blood preserved on FTA cards. Zoo Biol. 2012;31(1):98–106.
Article
CAS
Google Scholar
Armstrong E, Leizagoyen C, Martinez AM, Gonzalez S, Delgado JV, Postiglioni A. Genetic structure analysis of a highly inbred captive population of the African Antelope Addax nasomaculatus. Conservation and management implications. Zoo Biol. 2011;30(4):399–411.
Article
CAS
Google Scholar
Radwan J, Biedrzycka A, Babik W. Does reduced MHC diversity decrease viability of vertebrate populations? Biol Conserv. 2010;143(3):537–44.
Article
Google Scholar
Lillie M, Grueber CE, Sutton JT, Howitt R, Bishop PJ, Gleeson D, Belov K. Selection on MHC class II supertypes in the New Zealand endemic Hochstetter's frog. BMC Evol Biol. 2015;15:63.
Article
Google Scholar
Lillie M, Dubey S, Shine R, Belov K. Variation in major histocompatibility complex diversity in invasive cane toad populations. Wildl Res. 2017;44(6–7):565–72.
Article
Google Scholar
Biedrzycka A, Kloch A. Development of novel associations between MHC alleles and susceptibility to parasitic infections in an isolated population of an endangered mammal. Infect Genet Evol. 2016;44:210–7.
Article
CAS
Google Scholar
Zeng CJ, Pan HJ, Gong SB, Yu JQ, Wan QH, Fang SG. Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region. BMC Genomics. 2007;8:315.
Article
Google Scholar
Ruan R, Ruan J, Wan X-L, Zheng Y, Chen M-M, Zheng J-S, Wang D. Organization and characteristics of the major histocompatibility complex class II region in the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis). Sci Rep. 2016;6.
Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.
Article
CAS
Google Scholar
Richardson PD, Withrington PG. Liver blood flow. I. Intrinsic and nervous control of liver blood flow. Gastroenterology. 1981;81(1):159–73.
Article
CAS
Google Scholar
Li F, Tian Z. The liver works as a school to educate regulatory immune cells. Cell Mol Immunol. 2013;10(4):292–302.
Article
CAS
Google Scholar
Schwartz JC, Philp RL, Bickhart DM, Smith TPL, Hammond JA. The antibody loci of the domestic goat (Capra hircus). Immunogenetics. 2018;70(5):317–26.
Article
CAS
Google Scholar
Gertz EM, Schaffer AA, Agarwala R, Bonnet-Garnier A, Rogel-Gaillard C, Hayes H, Mage RG. Accuracy and coverage assessment of Oryctolagus cuniculus (rabbit) genes encoding immunoglobulins in the whole genome sequence assembly (OryCun2.0) and localization of the IGH locus to chromosome 20. Immunogenetics. 2013;65(10):749–62.
Article
CAS
Google Scholar
Li G, Liu K, Jiao S, Liu H, Blair HT, Zhang P, Cui X, Tan P, Gao J, Ma RZ. A physical map of a BAC clone contig covering the entire autosome insertion between ovine MHC class IIa and IIb. BMC Genomics. 2012;13.
Article
CAS
Google Scholar
Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH. High throughput fingerprint analysis of large-insert clones. Genome Res. 1997;7(11):1072–84.
Article
CAS
Google Scholar
Soderlund C, Longden I, Mott R. FPC: a system for building contigs from restriction fingerprinted clones. Comput Appl Biosci. 1997;13(5):523–35.
CAS
PubMed
Google Scholar
Krishan A, Dandekar P, Nathan N, Hamelik R, Miller C, Shaw J. DNA index, genome size, and electronic nuclear volume of vertebrates from the Miami metro zoo. Cytometry A. 2005;65(1):26–34.
Article
Google Scholar
Ballingall KT, McIntyre A, Lin Z, Timmerman N, Matthysen E, Lurz PWW, Melville L, Wallace A, Meredith AL, Romeo C, et al. Limited diversity associated with duplicated class II MHC-DRB genes in the red squirrel population in the United Kingdom compared with continental Europe. Conserv Genet. 2016;17(5):1171–82.
Article
CAS
Google Scholar
Li S, Li B, Cheng C, Xiong Z, Liu Q, Lai J, Carey HV, Zhang Q, Zheng H, Wei S, et al. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol. 2014;15(12):557.
Article
Google Scholar
Chaves R, Guedes-Pinto H, Heslop-Harrison JS. Phylogenetic relationships and the primitive X chromosome inferred from chromosomal and satellite DNA analysis in Bovidae. Proc Biol Sci. 2005;272(1576):2009–16.
Article
CAS
Google Scholar
Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, Adelson DL, Eichler EE, Elnitski L, Guigo R, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science (New York, NY). 2009;324(5926):522–8.
Article
Google Scholar
Jiang Y, Xie M, Chen W, Talbot R, Maddox JF, Faraut T, Wu C, Muzny DM, Li Y, Zhang W, et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science (New York, NY). 2014;344(6188):1168–73.
Article
CAS
Google Scholar
Vaiman D, Billault A, Tabet-Aoul K, Schibler L, Vilette D, Oustry-Vaiman A, Soravito C, Cribiu EP. Construction and characterization of a sheep BAC library of three genome equivalents. Mamm Genome. 1999;10(6):585–7.
Article
CAS
Google Scholar
Grogan KE, Sauther ML, Cuozzo FP, Drea CM. Genetic wealth, population health: major histocompatibility complex variation in captive and wild ring-tailed lemurs (Lemur catta). Ecol Evol. 2017;7(19):7638–49.
Article
Google Scholar
Amills M, Ramiya V, Norimine J, Lewin HA. The major histocompatibility complex of ruminants. Revue scientifique et technique (International Office of Epizootics). 1998;17(1):108–20.
CAS
Google Scholar
Lewin HA, Russell GC, Glass EJ. Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev. 1999;167:145–58.
Article
CAS
Google Scholar