Andreassen R, Worren MM, Høyheim B. Discovery and characterization of miRNA genes in Atlantic salmon (Salmo salar) by use of a deep sequencing approach. BMC Genomics. 2013;14:482. https://doi.org/10.1186/1471-2164-14-482.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533:200–5. https://doi.org/10.1038/nature17164.
Article
CAS
PubMed
Google Scholar
Christensen KA, Rondeau EB, Minkley DR, Leong JS, Nugent CM, Danzmann RG, et al. The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS One. 2018;13:e0204076. https://doi.org/10.1371/journal.pone.0204076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, et al. Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLoS One. 2018;13:e0195461. https://doi.org/10.1371/journal.pone.0195461.
Article
CAS
PubMed
PubMed Central
Google Scholar
Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates. Nat Commun. 2014;5:3657. https://doi.org/10.1038/ncomms4657.
Article
PubMed
PubMed Central
Google Scholar
Bolstad GH, Hindar K, Robertsen G, Jonsson B, Sægrov H, Diserud OH, et al. Gene flow from domesticated escapes alters the life history of wild Atlantic salmon. Nat Ecol Evol. 2017;1:124. https://doi.org/10.1038/s41559-017-0124.
Article
PubMed
Google Scholar
Czorlich Y, Aykanat T, Erkinaro J, Orell P, Primmer CR. Rapid sex-specific evolution of age at maturity is shaped by genetic architecture in Atlantic salmon. Nat Ecol Evol. 2018;2:1800–7. https://doi.org/10.1038/s41559-018-0681-5.
Article
PubMed
PubMed Central
Google Scholar
Barson NJ, Aykanat T, Hindar K, Baranski M, Bolstad GH, Fiske P, et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 2015;528:405–8. https://doi.org/10.1038/nature16062.
Article
CAS
PubMed
Google Scholar
Moen T, Torgersen J, Santi N, Davidson WS, Baranski M, Ødegård J, et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in atlantic salmon. Genetics. 2015;200:1313–26. https://doi.org/10.1534/genetics.115.175406.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Olsen RE, Gillard GB, Østensen M-A, Korsvoll SA, Santi N, et al. A systemic study of lipid metabolism regulation in salmon fingerlings and early juveniles fed plant oil. Br J Nutr. 2018;120:653–64. https://doi.org/10.1017/S0007114518001885.
Article
CAS
PubMed
Google Scholar
Jin Y, Olsen RE, Østensen M-A, Gillard GB, Korsvoll SA, Santi N, et al. Transcriptional development of phospholipid and lipoprotein metabolism in different intestinal regions of Atlantic salmon (Salmo salar) fry. BMC Genomics. 2018;19:253. https://doi.org/10.1186/s12864-018-4651-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillard G, Harvey TN, Gjuvsland A, Jin Y, Thomassen M, Lien S, et al. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. Mol Ecol. 2018;27:1200–13. https://doi.org/10.1111/mec.14533.
Article
CAS
PubMed
Google Scholar
Sandve SR, Rohlfs RV, Hvidsten TR. Subfunctionalization versus neofunctionalization after whole-genome duplication. Nat Genet. 2018;50:908–9. https://doi.org/10.1038/s41588-018-0162-4.
Article
CAS
PubMed
Google Scholar
Varadharajan S, Sandve SR, Gillard GB, Tørresen OK, Mulugeta TD, Hvidsten TR, et al. The Grayling Genome Reveals Selection on Gene Expression Regulation after Whole-Genome Duplication. Genome Biol Evol. 2018;10:2785–800. https://doi.org/10.1093/gbe/evy201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyle EA, Li YI, Pritchard JK. An expanded view of complex traits: from polygenic to omnigenic. Cell. 2017;169:1177–86. https://doi.org/10.1016/j.cell.2017.05.038.
Article
CAS
PubMed
PubMed Central
Google Scholar
Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet. 2014;15:734–48. https://doi.org/10.1038/nrg3802.
Article
CAS
PubMed
Google Scholar
Wong ES, Schmitt BM, Kazachenka A, Thybert D, Redmond A, Connor F, et al. Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nat Commun. 2017;8:1092. https://doi.org/10.1038/s41467-017-01037-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M, Pignatelli M, et al. Enhancer evolution across 20 mammalian species. Cell. 2015;160:554–66. https://doi.org/10.1016/j.cell.2015.01.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trizzino M, Park Y, Holsbach-Beltrame M, Aracena K, Mika K, Caliskan M, et al. Transposable elements are the primary source of novelty in primate gene regulation. Genome Res. 2017;27:1623–33. https://doi.org/10.1101/gr.218149.116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Samy JKA, Mulugeta TD, Nome T, Sandve SR, Grammes F, Kent MP, et al. SalmoBase: an integrated molecular data resource for Salmonid species. BMC Genomics. 2017;18:482. https://doi.org/10.1186/s12864-017-3877-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158:1431–43. https://doi.org/10.1016/j.cell.2014.08.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46:D260–6. https://doi.org/10.1093/nar/gkx1126.
Article
CAS
PubMed
Google Scholar
Contreras-Moreira B. 3D-footprint: a database for the structural analysis of protein-DNA complexes. Nucleic Acids Res. 2010;38 Database issue:D91–7. https://doi.org/10.1093/nar/gkp781.
Article
CAS
PubMed
Google Scholar
Hume MA, Barrera LA, Gisselbrecht SS, Bulyk ML. UniPROBE, update 2015: new tools and content for the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res. 2015;43(Database issue):D117–22. https://doi.org/10.1093/nar/gku1045.
Article
CAS
PubMed
Google Scholar
Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P, et al. DNA-binding specificities of human transcription factors. Cell. 2013;152:327–39. https://doi.org/10.1016/j.cell.2012.12.009.
Article
CAS
PubMed
Google Scholar
Jolma A, Yin Y, Nitta KR, Dave K, Popov A, Taipale M, et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature. 2015;527:384–8. https://doi.org/10.1038/nature15518.
Article
CAS
PubMed
Google Scholar
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356. https://doi.org/10.1126/science.aaj2239.
Article
Google Scholar
Isakova A, Groux R, Imbeault M, Rainer P, Alpern D, Dainese R, et al. SMiLE-seq identifies binding motifs of single and dimeric transcription factors. Nat Methods. 2017;14:316–22. https://doi.org/10.1038/nmeth.4143.
Article
CAS
PubMed
Google Scholar
Sebastian A, Contreras-Moreira B. footprintDB: a database of transcription factors with annotated cis elements and binding interfaces. Bioinformatics. 2014;30:258–65. https://doi.org/10.1093/bioinformatics/btt663.
Article
CAS
PubMed
Google Scholar
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fedorova AD, Rumynskiy EI, et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Res. 2018;46:D252–9. https://doi.org/10.1093/nar/gkx1106.
Article
CAS
PubMed
Google Scholar
Shazman S, Lee H, Socol Y, Mann RS, Honig B. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites. Nucleic Acids Res. 2014;42(Database issue):D167–71. https://doi.org/10.1093/nar/gkt1165.
Article
CAS
PubMed
Google Scholar
Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34(Database issue):D108–10. https://doi.org/10.1093/nar/gkj143.
Article
CAS
PubMed
Google Scholar
Nguyen NTT, Contreras-Moreira B, Castro-Mondragon JA, Santana-Garcia W, Ossio R, Robles-Espinoza CD, et al. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Res. 2018;46:W209–14. https://doi.org/10.1093/nar/gky317.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27:1017–8. https://doi.org/10.1093/bioinformatics/btr064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jayaram N, Usvyat D, R Martin AC. Evaluating tools for transcription factor binding site prediction. BMC Bioinformatics. 2016. https://doi.org/10.1186/s12859-016-1298-9.
Tabach Y, Brosh R, Buganim Y, Reiner A, Zuk O, Yitzhaky A, et al. Wide-scale analysis of human functional transcription factor binding reveals a strong bias towards the transcription start site. PLoS One. 2007;2:e807. https://doi.org/10.1371/journal.pone.0000807.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koudritsky M, Domany E. Positional distribution of human transcription factor binding sites. Nucleic Acids Res. 2008;36:6795–805. https://doi.org/10.1093/nar/gkn752.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu C-P, Lin J-J, Li W-H. Positional distribution of transcription factor binding sites in Arabidopsis thaliana. Sci Rep. 2016;6:25164. https://doi.org/10.1038/srep25164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erb I, van Nimwegen E. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters. PLoS One. 2011;6:ee24279. https://doi.org/10.1371/journal.pone.0024279.
Article
CAS
Google Scholar
Angiuoli SV, Salzberg SL. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics. 2011;27:334–42. https://doi.org/10.1093/bioinformatics/btq665.
Article
CAS
PubMed
Google Scholar
Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–50. https://doi.org/10.1101/gr.3715005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–3. https://doi.org/10.1093/nar/gkw1129.
Article
CAS
PubMed
Google Scholar
Reed BD, Charos AE, Szekely AM, Weissman SM, Snyder M. Genome-wide occupancy of SREBP1 and its partners NFY and SP1 reveals novel functional roles and combinatorial regulation of distinct classes of genes. PLoS Genet. 2008;4:e1000133. https://doi.org/10.1371/journal.pgen.1000133.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carmona-Antoñanzas G, Tocher DR, Martinez-Rubio L, Leaver MJ. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene. 2014;534:1–9. https://doi.org/10.1016/j.gene.2013.10.040.
Article
CAS
PubMed
Google Scholar