Hansson BS, Stensmyr MC. Evolution of insect olfaction. Neuron. 2011;72:698–711.
Article
CAS
PubMed
Google Scholar
Benton R. Multigene family evolution: perspectives from insect chemoreceptors. Trends Ecol Evol. 2015;30:590–600.
Article
PubMed
Google Scholar
Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet. 2008;9:951–63.
Article
CAS
PubMed
Google Scholar
Andersson MN, Newcomb RD. Pest control compounds targeting insect chemoreceptors: another silent spring? Front Ecol Evol. 2017;5:5.
Article
Google Scholar
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Front Ecol Evol. 2015;3:53.
Google Scholar
Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 2006;4:240–57.
Article
CAS
Google Scholar
Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999;22:327–38.
Article
CAS
PubMed
Google Scholar
Gao Q, Chess A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics. 1999;60:31–9.
Article
CAS
PubMed
Google Scholar
Vosshall L, Amrein H, Morozov P, Rzhetsky A, Axel R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell. 1999;96:725–36.
Article
CAS
PubMed
Google Scholar
Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, et al. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol. 2008;38:770–80.
Article
CAS
PubMed
Google Scholar
Vosshall LB, Hansson BS. A unified nomenclature system for the insect olfactory coreceptor. Chem Senses. 2011;36:497–8.
Article
PubMed
Google Scholar
Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, et al. The origin of the odorant receptor gene family in insects. eLife. 2018;7:e38340.
Article
PubMed
PubMed Central
Google Scholar
Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560:447–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsson MC, Domingos AI, Jones WD, Chiappe ME, Amrein H, Vosshall LB. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron. 2004;43:703–14.
Article
CAS
PubMed
Google Scholar
Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452:1002–6.
Article
CAS
PubMed
Google Scholar
Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452:1007–11.
Article
CAS
PubMed
Google Scholar
Clyne PJ, Warr CG, Carlson JR. Candidate taste receptors in Drosophila. Science. 2000;287:1830–4.
Article
CAS
PubMed
Google Scholar
Vosshall LB, Stocker RF. Molecular architecture of smell and taste in Drosophila. Annu Rev Neurosci. 2007;30:505–33.
Article
CAS
PubMed
Google Scholar
S-i E, Soh HY, Posavi M, Munro JB, Hughes DS, Murali SC, et al. Evolutionary history of chemosensory-related gene families across the Arthropoda. Mol Biol Evol. 2017;34:1838–62.
Article
CAS
Google Scholar
Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2003;100:14537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon JY, Dahanukar A, Weiss LA, Carlson JR. The molecular basis of CO2 reception in Drosophila. Proc Natl Acad Sci. 2007;104:3574–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robertson HM, Kent LB. Evolution of the gene lineage encoding the carbon dioxide receptor in insects. J Insect Sci. 2009;9:19.
PubMed
PubMed Central
Google Scholar
Benton R, Vannice KS, Gomez-Diaz C, Vosshall LB. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell. 2009;136:149–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R. Functional architecture of olfactory ionotropic glutamate receptors. Neuron. 2011;69:44–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 2010;6:e1001064.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rytz R, Croset V, Benton R. Ionotropic Receptors (IRs). Chemosensory ionotropic glutamate receptors in Drosophila and beyond. Insect Biochem Mol Biol. 2013;43:888–97.
Article
CAS
PubMed
Google Scholar
Chen C, Buhl E, Xu M, Croset V, Rees JS, Lilley KS, et al. Drosophila ionotropic receptor 25a mediates circadian clock resetting by temperature. Nature. 2015;527:516–20.
Article
CAS
PubMed
Google Scholar
Enjin A, Zaharieva EE, Frank DD, Mansourian S, Suh GS, Gallio M, et al. Humidity sensing in Drosophila. Curr Biol. 2016;26:1352–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang YV, Ni J, Montell C. The molecular basis for attractive salt-taste coding in Drosophila. Science. 2013;340:1334–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Alcañiz JA, Silbering AF, Croset V, Zappia G, Sivasubramaniam AK, Abuin L, et al. An expression atlas of variant ionotropic glutamate receptors identifies a molecular basis of carbonation sensing. Nat Commun. 2018;9:4252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature. 2007;450:289–93.
CAS
PubMed
Google Scholar
Nichols Z, Vogt RG. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum. Insect Biochem Mol Biol. 2008;38:398–415.
Article
CAS
PubMed
Google Scholar
Dippel S, Kollmann M, Oberhofer G, Montino A, Knoll C, Krala M, et al. Morphological and transcriptomic analysis of a beetle chemosensory system reveals a gnathal olfactory center. BMC Biol. 2016;14:90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomez-Diaz C, Bargeton B, Abuin L, Bukar N, Reina JH, Bartoi T, et al. A CD36 ectodomain mediates insect pheromone detection via a putative tunnelling mechanism. Nat Commun. 2016;7:11866.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Ni JD, Huang J, Montell C. Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity. PLoS Genet. 2014;10:e1004600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pregitzer P, Greschista M, Breer H, Krieger J. The sensory neurone membrane protein SNMP1 contributes to the sensitivity of a pheromone detection system. Insect Mol Biol. 2014;23:733–42.
Article
CAS
PubMed
Google Scholar
Sánchez-Gracia A, Vieira FG, Rozas J. Molecular evolution of the major chemosensory gene families in insects. Heredity. 2009;103:208–16.
Article
CAS
PubMed
Google Scholar
Vogt RG, Prestwich GD, Lerner MR. Odorant-binding-protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. J Neurobiol. 1991;22:74–84.
Article
CAS
PubMed
Google Scholar
Große-Wilde E, Svatoš A, Krieger J. A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses. 2006;31:547–55.
Article
PubMed
Google Scholar
Leal WS. Odorant reception in insects. Roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013;58:373–91.
Article
CAS
PubMed
Google Scholar
Damberger FF, Michel E, Ishida Y, Leal WS, Wüthrich K. Pheromone discrimination by a pH-tuned polymorphism of the Bombyx mori pheromone-binding protein. Proc Natl Acad Sci U S A. 2013;110:18680–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife. 2016;5:e20242.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Dai L, Chu H, Fu D, Sun Y, Chen H. Identification, expression patterns, and functional characterization of chemosensory proteins in Dendroctonus armandi (Coleoptera: Curculionidae: Scolytinae). Front Physiol. 2018;9:291.
Article
PubMed
PubMed Central
Google Scholar
Bohbot J, Sobrio F, Lucas P, Nagnan-Le MP. Functional characterization of a new class of odorant-binding proteins in the moth Mamestra brassicae. Biochem Biophys Res Commun. 1998;253:489–94.
Article
CAS
PubMed
Google Scholar
Pelosi P, Zhou JJ, Ban LP, Calvello M. Soluble proteins in insect chemical communication. Cell Mol Life Sci. 2006;63:1658–76.
Article
CAS
PubMed
Google Scholar
Kitabayashi AN, Arai T, Kubo T, Natori S. Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of Periplaneta americana (American cockroach). Insect Biochem Mol Biol. 1998;28:785–90.
Article
CAS
PubMed
Google Scholar
Montagné N, de Fouchier A, Newcomb RD, Jacquin-Joly E. Advances in the identification and characterization of olfactory receptors in insects. Prog Mol Biol Transl Sci. 2015;130:55–80.
Article
CAS
PubMed
Google Scholar
Liu Y, Sun L, Cao D, Walker WB, Zhang Y, Wang G. Identification of candidate olfactory genes in Leptinotarsa decemlineata by antennal transcriptome analysis. Front Ecol Evol. 2015;3:60.
Article
Google Scholar
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8:1931.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engsontia P, Sangket U, Chotigeat W, Satasook C. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation. J Mol Evol. 2014;79:21–39.
Article
CAS
PubMed
Google Scholar
Liu N-Y, Xu W, Dong S-L, Zhu J-Y, Xu Y-X, Anderson A. Genome-wide analysis of ionotropic receptor gene repertoire in Lepidoptera with an emphasis on its functions of Helicoverpa armigera. Insect Biochem Mol Biol. 2018;99:37–53.
Article
CAS
PubMed
Google Scholar
Zhao C, Escalante LN, Chen H, Benatti TR, Qu J, Chellapilla S, et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr Biol. 2015;25:613–20.
Article
CAS
PubMed
Google Scholar
Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol Biol. 2019. https://doi.org/10.1111/imb.12611.
Engsontia P, Sanderson AP, Cobb M, Walden KKO, Robertson HM, Brown S. The red flour beetle's large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem Mol Biol. 2008;38:387–97.
Article
CAS
PubMed
Google Scholar
Tribolium genome sequencing consortium. The genome of the model beetle and pest Tribolium castaneum. Nature 2008;452:949–955.
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2016;17:227.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dippel S, Oberhofer G, Kahnt J, Gerischer L, Opitz L, Schachtner J, et al. Tissue-specific transcriptomics, chromosomal localization, and phylogeny of chemosensory and odorant binding proteins from the red flour beetle Tribolium castaneum reveal subgroup specificities for olfaction or more general functions. BMC Genomics. 2014;15:1141.
Article
PubMed
PubMed Central
Google Scholar
Meng P, Hoover K, Keena M. Asian longhorned beetle (Coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe. J Integr Pest Manag. 2015;6:4.
Article
Google Scholar
Raffa KF, Andersson MN, Schlyter F. Chapter one-Host selection by bark beetles: Playing the odds in a high-stakes game. In: Tittiger C, Blomquist GJ, editors. Adv Insect Physiol, vol. 50. Oxford: Academic press; 2016. p. 1–74.
Google Scholar
Conn J, Borden J, Scott B, Friskie L, Pierce H Jr, Oehlschlager A. Semiochemicals for the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Scolytidae) in British Columbia: field trapping studies. Can J For Res. 1983;13:320–4.
Article
Google Scholar
Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–90.
Article
CAS
PubMed
Google Scholar
Anulewicz AC, Mccullough DG, Cappaert DL, Poland TM. Host range of the emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae) in North America: results of multiple-choice field experiments. Environ Entomol. 2014;37:230–41.
Article
Google Scholar
Crook DJ, Mastro VC. Chemical ecology of the emerald ash borer Agrilus planipennis. J Chem Ecol. 2010;36:101–12.
Article
CAS
PubMed
Google Scholar
de Groot P, Grant GG, Poland TM, Scharbach R, Buchan L, Nott RW, et al. Electrophysiological response and attraction of emerald ash borer to green leaf volatiles (GLVs) emitted by host foliage. J Chem Ecol. 2008;34:1170–9.
Article
CAS
PubMed
Google Scholar
Pureswaran DS, Poland TM. The role of olfactory cues in short-range mate finding by the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). J Insect Behav. 2009;22:205–16.
Article
Google Scholar
Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, Li M, et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics. 2013;14:198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mamidala P, Wijeratne AJ, Wijeratne S, Poland T, Qazi SS, Doucet D, et al. Identification of odor-processing genes in the emerald ash borer, Agrilus planipennis. PloS one. 2013;8:e56555.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 2002;12:1357–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeling CI, Henderson H, Li M, Yuen M, Clark EL, Fraser JD, et al. Transcriptome and full-length cDNA resources for the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major insect pest of pine forests. Insect Biochem Mol Biol. 2012;42:525–36.
Article
CAS
PubMed
Google Scholar
Smadja C, Shi P, Butlin RK, Robertson HM. Large gene family expansions and adaptive evolution for odorant and gustatory receptors in the pea aphid, Acyrthosiphon pisum. Mol Biol Evol. 2009;26:2073–86.
Article
CAS
PubMed
Google Scholar
Sharkey CR, Fujimoto MS, Lord NP, Shin S, McKenna DD, Suvorov A, et al. Overcoming the loss of blue sensitivity through opsin duplication in the largest animal group, beetles. Sci Rep. 2017;7:8.
Article
PubMed
PubMed Central
Google Scholar
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A. St. John O, wild R, et al. a comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–6.
Article
CAS
PubMed
Google Scholar
Yuvaraj JK, Andersson MN, Zhang D-D, Löfstedt C. Antennal transcriptome analysis of the chemosensory gene families from Trichoptera and basal Lepidoptera. Front Physiol. 2018;9:1365.
Article
PubMed
PubMed Central
Google Scholar
Yuvaraj JK, Corcoran JA, Andersson MN, Newcomb RD, Anderbrant O, Löfstedt C. Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera. Mol Biol Evol. 2017;34:2733–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuvaraj JK, Andersson MN, Corcoran JA, Anderbrant O, Löfstedt C. Functional characterization of odorant receptors from Lampronia capitella suggests a non-ditrysian origin of the lepidopteran pheromone receptor clade. Insect Biochem Mol Biol. 2018;100:39–47.
Article
CAS
PubMed
Google Scholar
Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, et al. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science. 2010;330:86–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
McBride CS. Rapid evolution of smell and taste receptor genes during host specialization in Drosophila sechellia. Proc Natl Acad Sci. 2007;104:4996–5001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science. 2015;347:1258522.
Article
CAS
PubMed
Google Scholar
Andersson MN, Larsson MC, Schlyter F. Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors. J Insect Physiol. 2009;55:556–67.
Article
CAS
PubMed
Google Scholar
Larsson MC, Leal WS, Hansson BS. Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J Insect Physiol. 2001;47:1065–76.
Article
CAS
PubMed
Google Scholar
Antony B, Soffan A, Jakše J, Abdelazim MM, Aldosari SA, Aldawood AS, et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics. 2016;17:69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu X-C, Zhang Y-N, Kang K, Dong S-L, Zhang L-W. Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB), Dendroctonus valens. PloS one. 2015;10:e0125159.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson MN, Videvall E, Walden KKO, Harris MO, Robertson HM, Löfstedt C. Sex- and tissue-specific profiles of chemosensory gene expression in a herbivorous gall-inducing fly (Diptera: Cecidomyiidae). BMC Genomics. 2014;15:501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersson MN, Corcoran JA, Zhang D-D, Hillbur Y, Newcomb RD, Löfstedt C. A sex pheromone receptor in the hessian fly Mayetiola destructor (Diptera, Cecidomyiidae). Front Cell Neurosci. 2016;10:212.
PubMed
PubMed Central
Google Scholar
Zhou J-J, Huang W, Zhang G-A, Pickett JA, Field LM. “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene. 2004;327:117–29.
Article
CAS
PubMed
Google Scholar
Keeling CI, Yuen MMS, Liao NY, Docking TR, Chan SK, Taylor GA, et al. Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest. Genome Biol. 2013;14:R27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robertson HM, Gadau J, Wanner KW. The insect chemoreceptor superfamily of the parasitoid jewel wasp Nasonia vitripennis. Insect Mol Biol. 2010;19:121–36.
Article
CAS
PubMed
Google Scholar
Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 2006;16:1395–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Ki K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree2 - approximately maximum-likelyhood trees for large alignments. PlosOne. 2010;5(3):e9490.
Article
CAS
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
PubMed
Google Scholar
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34:772–3.
Google Scholar
Rambaut A. FigTree v1.4.0, a graphical viewer of phylogenetic trees. http://tree.bio.ed.ac.uk/software/figtree/. 2014.
Google Scholar
Wang J, Gao P, Luo Y, Tao J. Characterization and expression profiling of odorant-binding proteins in Anoplophora glabripennis Motsch. Gene. 2019;693:25–36.
Article
CAS
PubMed
Google Scholar