Spencer SG, Hallem EA. Mechanisms of host seeking by parasitic nematodes. Mol Biochem Parasitol. 2016;208(1):23–32. https://doi.org/10.1016/j.molbiopara.2016.05.007.
Article
CAS
Google Scholar
Castelletto ML, Gang SS, Okubo RP, Tselikova AA, Nolan TJ, Platzer EG, et al. Diverse host-seeking behaviors of skin-penetrating nematodes. PLoS Pathog. 2014;10(8):e1004305. https://doi.org/10.1371/journal.ppat.1004305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaisson KE, Hallem EA. Chemosensory behaviors of parasites. Trends Parasitol. 2012;28(10):427–36. https://doi.org/10.1016/j.pt.2012.07.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA. Olfaction shapes host–parasite interactions in parasitic nematodes. PNAS. 2012;109(35):E2324–E33. https://doi.org/10.1073/pnas.1211436109.
Article
PubMed
PubMed Central
Google Scholar
Ruiz F, Gang SS, Castelletto ML, Hallem EA. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog. 2017;13(11):e1006709. https://doi.org/10.1371/journal.ppat.1006709.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mousley A, McVeigh P, Dalzell JJ, Maule AG. In: Kennedy MW, Harnett W, editors. ISBN: 9781845937591 Nematode neuropeptide communication systems. In, parasitic nematodes: molecular biology, biochemistry and immunology: CAB International; 2013. https://doi.org/10.1079/9781845937591.0279.
Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I. The FMRFamide-like peptide family in nematodes. Front Endocrinol. 2014;5:90. https://doi.org/10.3389/fendo.2014.00090.
Article
Google Scholar
Lee JS, Shih PY, Schaedel ON, Quintero-Cadena P, Rogers AK, Sternberg PW. FMRF amide-like peptides expand the behavioural repertoire of a densely connected nervous system. PNAS. 2017;114(50):E10726–35. https://doi.org/10.1073/pnas.1710374114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris R, Wilson L, Sturrock M, Warnock ND, Carrizo D, Cox D, et al. A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae. PLoS Pathog. 2017;13(3):e1006185. https://doi.org/10.1371/journal.ppat.1006185.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee D, Lee H, Kim N, Lim DS, Lee J. Regulation of a hitchhiking behavior by neuronal insulin and TGF-β signaling in the nematode Caenorhabditis elegans. Biochem Biophys Res Commun. 2017;484(2):323–30. https://doi.org/10.1016/j.bbrc.2017.01.113.
Article
CAS
PubMed
Google Scholar
Warnock ND, Wilson L, Patten C, Fleming CC, Maule AG, Dalzell JJ. Nematode neuropeptides as transgenic nematicides. PLoS Pathog. 2017;13(2):e1006237. https://doi.org/10.1371/journal.ppat.1006237.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hobert O. The neuronal genome of Caenorhabditis elegans. WormBook: The C. elegans Research Community, WormBook; 2013. https://doi.org/10.1895/wormbook.1.161.1.
Jovelin R, Cutter AD. Microevolution of nematode miRNAs reveals diverse modes of selection. Genome Biol Evol. 2014;6(11):3049–63. https://doi.org/10.1093/gbe/evu239.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ. MicroRNAs and the advent of vertebrate morphological complexity. PNAS. 2008;105:2946–50. https://doi.org/10.1073/pnas.0712259105.
Article
PubMed
PubMed Central
Google Scholar
Iwama H, Kato K, Imachi H, Murao K, Masaki T. Human microRNAs originated from two periods at accelerated rates in mammalian evolution. Mol Biol Evol. 2013;30:613–26. https://doi.org/10.1093/molbev/mss262.
Article
CAS
PubMed
Google Scholar
Meunier J, Lemoine F, Soumillon M, Liechti A, Guschanski K, Hu H, Khaitovich P, Kaessmann H. Birth and expression evolution of mammalian microRNA genes. Genome Res. 2013;23(1):34–45. https://doi.org/10.1101/gr.140269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54 DOI not available.
Article
CAS
PubMed
Google Scholar
Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, et al. MicroRNA loss enhances learning and memory in mice. J Neurosci. 2010;30(44):14835–42. https://doi.org/10.1523/JNEUROSCI.3030-10.2010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashraf SI, McLoon AL, Sclarsic SM, Kunes S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell. 2006;124(1):191–205. https://doi.org/10.1016/j.cell.2005.12.017.
Article
CAS
PubMed
Google Scholar
Than MT, Kudlow BA, Han M. Functional analysis of neuronal MicroRNAs in Caenorhabditis elegans Dauer formation by combinational genetics and neuronal miRISC Immunoprecipitation. PLoS Genet. 2013;9(6):e1003592. https://doi.org/10.1371/journal.pgen.1003592.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu D, Macchietto M, Chang D, Barros MM, Baldwin J, Mortazavi A, Dillman AR. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog. 2017;13(4):31006302. https://doi.org/10.1371/journal.ppat.1006302.
Article
CAS
Google Scholar
Spence KO, Lewis EE, Perry RN. Host-finding and invasion by entomopathogeic and plant-parasitic nematodes: evaluating the ability of laboratory bioassays to predict field results. J Nematol. 2008;40(2):93–8 DOI not available.
PubMed
PubMed Central
Google Scholar
Campbell JF, Kaya HK. How and why a parasitic nematode jumps. Nature. 1999;397:485–6. https://doi.org/10.1038/17254.
Article
CAS
Google Scholar
Lee H, Choi MK, Lee D, Kim HS, Hwang H, Kim H, Park S, Paik YK, Lee J. Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by IL2 neurons. Nat Neurosci. 2011;15(1):107–12. https://doi.org/10.1038/nn.2975.
Article
CAS
PubMed
Google Scholar
White G. A method for obtaining infective nematode larvae from cultures. Am Assoc Adv Sci. 1927;66(1709):302–3. https://doi.org/10.1126/science.66.1709.302-a.
Article
CAS
Google Scholar
Lee D, Lee H, Choi M-k, Park S, Lee J. Nictation assays for Caenorhabditis and other nematodes. Bioprotocol. 2015;5:e1433. https://doi.org/10.21769/BioProtoc.1433.
Article
Google Scholar
Andrew, S. FastQC: a quality control tool for high throughput sequence data, 2010; http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumine sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, et al. Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5. https://doi.org/10.1038/nbt.1621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dillman AR, Macchietto M, Porter CF, Rogers A, Williams B, Antoshechkin I, et al. Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biol. 2015;16:200. https://doi.org/10.1186/s13059-015-0746-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Article
CAS
PubMed
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leng N, Dawson JA, Thomson JA, Ruotti V, Rissman AI, Smits BM, Haag JD, Gould MN, Stewart RM, Kendziorski C. EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics. 2013;29(8):1035–43. https://doi.org/10.1093/bioinformatics/btt087.
Article
CAS
PubMed
PubMed Central
Google Scholar
Team RDC. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008. ISBN 3–900051–07-0, URL http://www.R-project.org
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neuwirth E. RColorBrewer: ColorBrewer Palettes. R package version 1.1–2, 2014; https://CRAN.R-project.org/package=RColorBrewer
Google Scholar
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1, 2016; http://CRAN.R-project.org/package=gplots
Google Scholar
Gentleman R, Biocore. Geneplotter: graphics related functions for Bioconductor, 2016; R package version 1.52.0.
Google Scholar
Kolde R. pheatmap: Pretty Heatmaps. R package version 1.0.8, 2015; http://CRAN.R-project.org/package=pheatmap.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10–2. https://doi.org/10.14806/ej.17.1.200.
Article
Google Scholar
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. MiRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40(1):37–52. https://doi.org/10.1093/nar/gkr688.
Article
CAS
PubMed
Google Scholar
Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res. 2015;1217. https://doi.org/10.1093/nar/gkv1217.
Article
PubMed
PubMed Central
Google Scholar
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosphila. Genome Biol. 2003;5(1):R1. https://doi.org/10.1186/gb-2003-5-1-r1.
Article
PubMed
PubMed Central
Google Scholar
Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol. 2010;17:1169–74. https://doi.org/10.1038/nsmb.1921.
Article
CAS
PubMed
Google Scholar
Zisoulis DG, Lovci MT, Wilbert ML, Hutt KR, Liang TY, et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat Struct Mol Biol. 2010;17:173–9. https://doi.org/10.1038/nsmb.1745.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen N, Harris TW, Antosheckin I, Bastiani C, Bieri T, et al. WormBase: a comprehensive data resource for Caenorhabditis biology and genomics. Nucleic Acids Res. 2005;33:D383–9. https://doi.org/10.1093/nar/gki066.
Article
CAS
PubMed
Google Scholar
Dalzell JJ, McVeigh P, Warnock ND, Mitreva M, Bird DM, Abad P, et al. RNAi effector diversity in nematodes. PLoS Negl Trop Dis. 2011;5(6):e1176. https://doi.org/10.1371/journal.pntd.0001176.
Article
CAS
PubMed
PubMed Central
Google Scholar
McVeigh P, Kimber MJ, Novozhilova E, Day TA. Neuropeptide signalling systems in flatworms. Parasitology. 2005;131:S41–55. https://doi.org/10.1017/S0031182005008851.
Article
CAS
PubMed
Google Scholar
Rougon-Cardoso A, Flores-Ponce M, Ramos-Aboites HE, Martinez-Guerrero CE, Hao Y-J, et al. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle. Sci Rep. 2016;6:37536. https://doi.org/10.1038/srep37536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook DE, Zdraljevic S, Roberts JP, Adersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017;45(D1):D650–7. https://doi.org/10.1093/nar/gkw893.
Article
CAS
PubMed
Google Scholar
Lee D, Yang H, Kim J, Brady S, Zradljevic S, Zamanian M, Kim H, Paik YK, Kruglyak L, Andersen EC, Lee J. The genetic basis of natural variation in a phoretic behaviour. Nat Commun. 2017;8(1):273. https://doi.org/10.1038/s41467-017-00386-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coburn CM, BArgman CI. A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron. 1996;17:695–706. https://doi.org/10.1016/S0896-6273(00)80201-9.
Article
CAS
PubMed
Google Scholar
Coburn CM, Mori I, Ohshima Y, BArgmann CI. A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure. Development. 1998;125:249–58 No doi available.
CAS
PubMed
Google Scholar
Gruner M, Nelson D, Winbush A, Hintz R, Ryu L, Chung SH, Kim K, Gabel CV, van der Linden AM. Feeding state, insulin and NPR-1 modulate chemoreceptor gene expression via integration of sensory and circuit inputs. PLoS Genet. 2014;10(10):e1004707. https://doi.org/10.1371/journal.pgen.1004707.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang XD, Ishibashi N. Infection of the entomopathogenic nematode, Steinernema carpocasae, as affected by the presence of Steinernema glaseri. J Nematol. 1999;31(2):207–11 DOI not available.
CAS
PubMed
PubMed Central
Google Scholar
Lee JH, Dillman AR, Hallem EA. Temperature-dependent changes in the host-seeking behaviors of parasitic nematodes. BMC Biol. 2016;14(1):1. https://doi.org/10.1186/s12915-016-0259-0.
Article
CAS
Google Scholar
Okumura E, Yoshiga T. Host orientation using volatiles in the phoretic nematode Caenorhabditis japonica. J Exp Biol. 2014;217(18):3197–9. https://doi.org/10.1242/jeb.105353.
Article
PubMed
Google Scholar
Yemini EI, Jucikas T, Grundy LJ, Brown AE, Schafer WR. A database of Caenorhabditis elegans behavioural phenotypes. Nat Methods. 2013;10:877–9. https://doi.org/10.1038/nmeth.2560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillan V, Maitland K, Laing R, Gu H, Marks ND, et al. Increased expression of a microRNA correlates with anthelmintic resistance in parasitic nematodes. Front Cell Infect Microbiol. 2017. https://doi.org/10.3389/fcimb.2017.00452.
Gu HY, Marks ND, Winter AD, Weir W, Tzelos T, McNeilly TN, Britton C, Devaney E. Conservation of a microRNA cluster in parasitic nematodes and profiling of miRNAs in excretory-secretory products and microvesicles of Haemonchus contortus. PLoS Negl Trop Dis. 2017;11(11):e0006056. https://doi.org/10.1371/journal.pntd.0006056.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamanian M, Cook DE, Zdraljevic S, Brady SC, Lee D, Lee J. Discovery of unique loci that underlie nematode responses to benzimidazoles. BioRχiv. 2017. https://doi.org/10.1101/116970.
Pinzόn N, Blaise L, Martinez L, Sergeeva A, Presumey J, Apparailly F, Seitz H. MicroRNA target prediction programs predict many false positives. Genome Res. 2017;27(2):234–45. https://doi.org/10.1101/gr.205146.116.
Article
CAS
Google Scholar
Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, et al. The landscape of C. elegans 3’UTRs. Science. 2010;329(5990):432–5. https://doi.org/10.1126/science.1191244.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blazie SM, Geissel HC, Wilky H, Joshi R, Newbern J, Mangone M. Alternative polyadenylation directs tissue-specific miRNA targeting in Caenorhabditis elegans somatic tissues. Genetics. 2017;206(2):757–74. https://doi.org/10.1534/genetics.116.196774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gustafsson C, Vallverdú J. The best model of a cat is several cats. Trends Biotechnol. 2016;34(3):207–13. https://doi.org/10.1016/j.tibtech.2015.12.006.
Article
CAS
PubMed
Google Scholar
Macchietto M, Angdembey D, Heidarpour N, Serra L, Rodriguez B, El-Alli N, Mortazavi A. Comparative transcriptomics of Steinernema and Caenorhabditis single embryos reveals orthologous gene expression convergence during late embryogenesis. Genome Biol Evol. 2017;9(10):2681–96. https://doi.org/10.1093/gbe/evx195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choe A, von Reuss SH, Kogan D, Gasser RB, Platzer EG, Schroeder FC, Sternberg PW. Ascaroside signalling is widely conserved among nematodes. Curr Biol. 2012;22(9):772–80. https://doi.org/10.1016/j.cub.2012.03.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 2015;142(Suppl 1):S26–39. https://doi.org/10.1017/S0031182014000791.
Article
PubMed
Google Scholar
Lu D, Baiocchi T, Dillman AR. Genomics of entomopathogenic nematodes and implications for pest control. Trends Parasitol. 2016;32(8):588–98. https://doi.org/10.1016/j.pt.2016.04.008.
Article
PubMed
PubMed Central
Google Scholar