Riaz S, Garrison KE, Dangl GS, Boursiquot J-M, Meredith CP. Genetic divergence and chimerism within ancient asexually propagated winegrape cultivars. J Amer Soc Hort Sci. 2002;127:508–14.
Article
CAS
Google Scholar
Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. PNAS. 2017;114:11715–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Franks T, Botta R, Thomas MR. Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet. 2002;104:192–9.
Article
CAS
PubMed
Google Scholar
Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, Bredeson JV, et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet Nature Publishing Group. 2017;49:959–63.
Article
CAS
Google Scholar
Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape “green revolution” mutation. Nature. 2002;416:847–50.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Goto-Yamamoto N, Hirochika H. Retrotransposon-induced mutations in grape skin color. Science. 2004;304:982.
Article
PubMed
Google Scholar
Walker AR, Lee E, Robinson SP. Two new grape cultivars, bud sports of cabernet sauvignon bearing pale-coloured berries, are the result of deletion of two regulatory genes of the berry colour locus. Plant Mol Biol Kluwer Academic Publishers. 2006;62:623–35.
Article
CAS
Google Scholar
Yakushiji H, Kobayashi S, Goto-Yamamoto N, Tae Jeong S, Sueta T, Mitani N, et al. A skin color mutation of grapevine, from black-skinned pinot noir to white-skinned pinot Blanc, is caused by deletion of the functional VvmybA1 allele. Biosci Biotechnol Biochem. 2006;70:1506–8.
Article
CAS
PubMed
Google Scholar
Pelsy F, Dumas V, Bévilacqua L, Hocquigny S, Merdinoglu D. Chromosome replacement and deletion Lead to clonal polymorphism of berry color in grapevine. PLoS Genet. 2015;11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou Y, Minio A, Massonnet M, Solares E, Lv Y, Beridze T, et al. The population genetics of structural variants in grapevine domestication. Nature Plants. 2019;5:965–79.
Article
PubMed
Google Scholar
Fernandez L, Torregrosa L, Segura V, Bouquet A, Martínez-Zapater JM. Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J. 2010;61:545–57.
Article
CAS
PubMed
Google Scholar
Fernandez L, Chaïb J, Zapater JMM, Thomas MR, Torregrosa L. Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J. 2013;73:918–28.
Article
CAS
PubMed
Google Scholar
Whitham TG, Slobodchikoff CN. Evolution by individuals, plant-herbivore interactions, and mosaics of genetic variability: the adaptive significance of somatic mutations in plants. Oecologia. 1981;49:287–92.
Article
PubMed
Google Scholar
Soost RK, Cameron JW, Bitters WP, Platt RG. Citrus bud variation, old and new. Calif Citrograph. 1961;46:188–93.
Google Scholar
Farcuh M, Li B, Rivero RM, Shlizerman L, Sadka A, Blumwald E. Sugar metabolism reprogramming in a non-climacteric bud mutant of a climacteric plum fruit during development on the tree. J Exp Bot. 2017;68:5813–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
McKey D, Elias M, Pujol B, Duputié A. The evolutionary ecology of clonally propagated domesticated plants. New Phytol. 2010;186:318–32.
Article
PubMed
Google Scholar
Gambino G, Molin AD, Boccacci P, Minio A, Chitarra W, Avanzato CG, et al. Whole-genome sequencing and SNV genotyping of “Nebbiolo” (Vitis vinifera L.) clones. Sci Rep. 2017;7:1–15.
Article
CAS
Google Scholar
Carrier G, Le Cunff L, Dereeper A, Legrand D, Sabot F, Bouchez O, et al. Transposable elements are a major cause of somatic polymorphism in Vitis vinifera L. PLoS One. 2012;7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, et al. Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar chardonnay. PLoS Genet. 2018;14.
Carbonell-Bejerano P, Royo C, Torres-Pérez R, Grimplet J, Fernandez L, Franco-Zorrilla JM, et al. Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine. Plant Physiol. 2017;175:786–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Plomion C, Aury J-M, Amselem J, Leroy T, Murat F, Duplessis S, et al. Oak genome reveals facets of long lifespan. Nature Plants. 2018;4:440–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ossowski S, Schneeberger K, Lucas-Lledó JI, Warthmann N, Clark RM, Shaw RG, et al. The rate and molecular Spectrum of spontaneous mutations in Arabidopsis thaliana. Science. 2010;327:92–4.
Article
CAS
PubMed
Google Scholar
Hershberg R, Petrov DA. Evidence that mutation is universally biased towards AT in bacteria. PLoS Genet. 2010;6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Selker EU. Premeiotic instability of repeated sequences in Neurospora crassa. Annu Rev Genet. 1990;24:579–613.
Article
CAS
PubMed
Google Scholar
Meunier J, Khelifi A, Navratil V, Duret L. Homology-dependent methylation in primate repetitive DNA. PNAS. 2005;102:5471–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mautino MR, Rosa AL. Analysis of models involving enzymatic activities for the occurrence of C-T transition mutations during repeat-induced point mutation (RIP) in Neurospora crassa. J Theor Biol. 1998;192:61–71.
Article
CAS
PubMed
Google Scholar
Schlötterer C, Tautz D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992;20:211–5.
Article
PubMed
PubMed Central
Google Scholar
Qi Y, He X, Wang X-J, Kohany O, Jurka J, Hannon GJ. Distinct catalytic and non-catalytic roles of ARGONAUTE4 in RNA-directed DNA methylation. Nature. 2006;443:1008–12.
Article
PubMed
Google Scholar
Shen H, He H, Li J, Chen W, Wang X, Guo L, et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell. 2012;24:875–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, et al. Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics. 2010;11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chan SW-L, Henderson IR, Jacobsen SE. Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6:351–60.
Article
CAS
PubMed
Google Scholar
Thompson MM, Olmo HP. Cytohistological studies of Cytochimeric and Tetraploid grapes. Am J Bot. 1963;50:901–6.
Article
Google Scholar
Hocquigny S, Pelsy F, Dumas V, Kindt S, Heloir M-C, Merdinoglu D. Diversification within grapevine cultivars goes through chimeric states. Genome. 2004;47:579–89.
Article
CAS
PubMed
Google Scholar
Klekowski EJ. Plant clonality, mutation, diplontic selection and mutational meltdown. Biol J Linn Soc. 2003;79:61–7.
Article
Google Scholar
Klekowski EJ, Kazarinova-Fukshansky N, Mohr H. Shoot apical meristems and mutation - stratified meristems and angiosperm evolution. Am J Bot. 1985;72:1788–800.
Article
Google Scholar
Tilney-Bassett RAE. Plant chimeras. Edward Arnold (Publishers) Ltd.; 1986.
Klekowski EJ. Mutation rates in mangroves and other plants. Genetica. 1998;102/103:325–31.
Article
Google Scholar
Muller HJ. Some genetic aspects of sex. Am Nat. 1932;66:118–38.
Article
Google Scholar
Pineda-Krch M, Fagerström T. On the potential for evolutionary change in meristematic cell lineages through intraorganismal selection. J Evol Biol. 1999;12:681–8.
Article
Google Scholar
Orive ME. Somatic mutations in organisms with complex life histories. Theor Popul Biol. 2001;59:235–49.
Article
CAS
PubMed
Google Scholar
CDFA. Grape Crush Report, Final 2016 Crop. 2016;1–5.
CDFA. California Grape Crush Report Preliminary. 2015;2016:1–141.
Google Scholar
Bowers JE, Bandman EB, Meredith CP. DNA fingerprint characterization of some wine grape cultivars. AJEV. 1993;44:266–74.
CAS
Google Scholar
Maletic E, Pejic I, Karoglan Kontic J, Piljac J, Dangl G, Vokurka A, et al. The identification of zinfandel on the Dalmatian coast of Croatia. Acta Hort. 2003;603:251–4.
Article
Google Scholar
Mirošević N, Meredith CP. A review of research and literature related to the origin and identity of the cultivars Plavac Mali, zinfandel and Primitivo (Vitis vinifera L.). Acta Hort. 2000;65:45–9.
Google Scholar
Maletic E, Pejic I, Kontic JK, Piljac J, Dangl GS, Vokurka A, et al. Zinfandel, Dobricic, and Plavac Mali: the genetic relationship among three cultivars of the Dalmatian coast of Croatia. AJEV. 2004;55:174–80.
CAS
Google Scholar
Fanizza G, Lamaj F, Ricciardi L, Resta P, Savino V. Grapevine cvs Primitivo, zinfandel and Crljenak kastelanski: molecular analysis by AFLP. Vitis. 2005;44:147–8.
CAS
Google Scholar
Russo G, Liuzzi V, D'Andrea L, Alviti G. Comparison among five clones of “Primitivo” vine in southern Italy. Hajdu E, Borbas E, editors. Acta Hort. 2003;603:779–86.
Article
Google Scholar
Wolpert JA. Performance of zinfandel and Primitivo clones in a warm climate. AJEV. 1996;47:124–6.
Google Scholar
Fidelibus MW, Christensen LP, Katayama DG, Verdenal P-T. Performance of zinfandel and Primitivo grapevine selections in the Central San Joaquin Valley. California AJEV. 2005;56:284–6.
Google Scholar
Zdunić G, Simon S, Malenica N, Budić-Leto I, Maletic E, Karoglan Kontić J, et al. Intravarietal variability of Crljenak Kastelanski' and its relationship with 'Zinfandel' and ‘Primitivo’ selections. Acta Hort. 2014;1046:573–80.
Article
Google Scholar
Sweet NL, Wolpert JA. The zinfandels of FPS. FPS Grape Program Newsletter. 2007:10–9.
Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Meth. 2016;13:1050–4.
Article
CAS
Google Scholar
Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature. 2007;449:463–7.
Article
CAS
PubMed
Google Scholar
Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, Haeseler A, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat Meth. 2018;15:461–8.
Article
CAS
Google Scholar
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen W-M. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26:2867–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boursiquot J-M, Lacombe T, Laucou V, Julliard S, Perrin FX, Lanier N, et al. Parentage of merlot and related winegrape cultivars of southwestern France: discovery of the missing link. Aust J Grape Wine Res. 2009;15:144–55.
Article
Google Scholar
Bowers J, Boursiquot J-M, This P, Chu K, Johansson K, Meredith C. Historical genetics: the parentage of chardonnay, gamay, and other wine grapes of northeastern France. Science. 1999;285:1562–5.
Article
CAS
PubMed
Google Scholar
Regner F, Stadlbauer A, Eisenheld C, Kaserer H. Genetic relationships among pinots and related cultivars. AJEV. 2000;51:7–14.
CAS
Google Scholar
Imazio S, Labra M, Grassi F, Winfield M, Bardini M, Scienza A. Molecular tools for clone identification: the case of the grapevine cultivar “Traminer”. Plant Breed. 2002;121:531–5.
Article
CAS
Google Scholar
Cingolani P, Platts A, Wang L l, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6:80–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tatarinova TV, Chekalin E, Nikolsky Y, Bruskin S, Chebotarov D, McNally KL, et al. Nucleotide diversity analysis highlights functionally important genomic regions. Sci Rep. 2016. https://doi.org/10.1038/srep35730.
Gaut BS, Seymour DK, Liu Q, Zhou Y. Demography and its effects on genomic variation in crop domestication. Nature Plants. 2018. https://doi.org/10.1038/s41477-018-0210-1.
Article
PubMed
Google Scholar
Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R. DNA hypomethylation leads to elevated mutation rates. Nature. 1998;395:89–93.
Article
CAS
PubMed
Google Scholar
Hirochika H, Okamoto H, Kakutani T. Silencing of Retrotransposons in Arabidopsis and reactivation by the ddm1 mutation. Plant Cell. 2000;12:357–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hirsch CD, Springer NM. Transposable element influences on gene expression in plants. Biochim Biophys Acta. 1860;2017:157–65.
Google Scholar
Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010;328:916–9.
Article
CAS
PubMed
Google Scholar
Guarino F, Cicatelli A, Brundu G, Heinze B, Castiglione S. Epigenetic diversity of clonal white poplar (Populus alba L.) populations: could methylation support the success of vegetative reproduction strategy? PLoS One. 2015;10:e0131480–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Douhovnikoff V, Dodd RS. Epigenetics: a potential mechanism for clonal plant success. Plant Ecol. 2014;216:227–33.
Article
Google Scholar
Klekowski EJ Jr, Kazarinova-Fukshansky N. Shoot apical meristems and mutation: selective loss of disadvantageous cell genotypes. Am J Bot. 1984;71:28–34.
Article
Google Scholar
Thomas MR, Cain P, Scott NS. DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol. 1994;25:939–49.
Article
CAS
PubMed
Google Scholar
Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H. Identification of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome. 1999;42:367–73.
Article
CAS
PubMed
Google Scholar
Jones L, Riaz S, Morales-Cruz A, Amrine KCH, McGuire B, Gubler WD, et al. Adaptive genomic structural variation in the grape powdery mildew pathogen. Erysiphe necator BMC Genomics. 2014. https://doi.org/10.1186/1471-2164-15-1081.
Article
PubMed
PubMed Central
Google Scholar
Minio A, Lin J, Gaut BS, Cantu D. How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front Plant Sci. 2017;8:481–6.
Article
Google Scholar
Myers G. Efficient Local Alignment Discovery amongst Noisy Long Reads. Wroclaw, Poland: Springer, Berlin, Heidelberg; 2014. 52–67.
Google Scholar
Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013. Available from: http://www.repeatmasker.org
Minio A, Massonnet M, Figueroa-Balderas R, Vondras AM, Blanco-Ulate B, Cantu D. Iso-Seq allows genome-independent Transcriptome profiling of grape berry development. G3: genes, genomes. Genetics. 2019;9:755–67.
CAS
Google Scholar
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater GSC, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005. https://doi.org/10.1186/1471-2105-6-31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31:5654–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004. https://doi.org/10.1186/1471-2105-5-59.
Article
PubMed
PubMed Central
Google Scholar
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34:W435–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Biol J Linn Soc. 2005;33:6494–506.
CAS
Google Scholar
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9.
Simão FA, Waterhouse RM, Ioannidis P, et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015. https://doi.org/10.1093/bioinformatics/btv351.
Article
PubMed
CAS
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013.
Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:333–9.
Article
CAS
Google Scholar
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. MUMmer4: A fast and versatile genome alignment system. PLoS Comput Biol. 2018. https://doi.org/10.1371/journal.pcbi.1005944.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018. https://doi.org/10.1093/bioinformatics/bty191.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo R, Sedlazeck FJ, Lam T-W, Schatz MC. A multi-task convolutional deep neural network for variant calling in single molecule sequencing. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-09025-z.
Kofler R, Gómez-Sánchez D, Schlötterer C. PoPoolationTE2: comparative population genomics of transposable elements using Pool-Seq. Mol Biol Evol. 2016;33:2759–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–82.
Article
CAS
PubMed
Google Scholar