Klockgether J, Tümmler B. Recent advances in understanding Pseudomonas aeruginosa as a pathogen. F1000Research. 2017;6:1261. https://doi.org/10.12688/f1000research.10506.1.
Article
PubMed
PubMed Central
Google Scholar
Azam MW, Khan AU. Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today. 2019;24:350–9.
Article
CAS
PubMed
Google Scholar
Holloway BW. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 1955;13:572–81.
CAS
PubMed
Google Scholar
Stanisich V, Holloway BW. Conjugation in Pseudomonas aeruginosa. Genetics. 1969;61:327–39.
CAS
PubMed
PubMed Central
Google Scholar
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 2000;406:959–64.
Article
CAS
PubMed
Google Scholar
Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44:D646–53.
Article
CAS
PubMed
Google Scholar
Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, et al. Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol. 2010;192:1113–21.
Article
CAS
PubMed
Google Scholar
Bhowmik BK, Clevenger AL, Zhao H, Rybenkov VV. Segregation but not replication of the Pseudomonas aeruginosa chromosome terminates at Dif. mBio. 2018;9:e01088–18. https://doi.org/10.1128/mBio.01088-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidorenko J, Jatsenko T, Kivisaar M. Ongoing evolution of Pseudomonas aeruginosa PAO1 sublines complicates studies of DNA damage repair and tolerance. Mutat Res Mol Mech Mutagen. 2017;797–799:26–37.
Article
CAS
Google Scholar
Luong PM, Shogan BD, Zaborin A, Belogortseva N, Shrout JD, Zaborina O, et al. Emergence of the P2 phenotype in Pseudomonas aeruginosa PAO1 strains involves various mutations in mexT or mexF. J Bacteriol. 2014;196:504–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chandler CE, Horspool AM, Hill PJ, Wozniak DJ, Schertzer JW, Rasko DA, et al. Genomic and phenotypic diversity among ten laboratory isolates of Pseudomonas aeruginosa PAO1. J Bacteriol. 2019;201:e00595–18.
CAS
PubMed
PubMed Central
Google Scholar
Cao H, Lai Y, Bougouffa S, Xu Z, Yan A. Comparative genome and transcriptome analysis reveals distinctive surface characteristics and unique physiological potentials of Pseudomonas aeruginosa ATCC 27853. BMC Genomics. 2017;18:459. https://doi.org/10.1186/s12864-017-3842-z.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dunn NW, Holloway BW. Pleiotropy of p-fluorophenylalanine-resistant and antibiotic hypersensitive mutants of Pseudomonas aeruginosa. Genet Res. 1971;18:185–97.
Article
CAS
PubMed
Google Scholar
Finger J, Krishnapillai V. Host range, entry exclusion, and incompatibility of Pseudomonas aeruginosa FP plasmids. Plasmid. 1980;3:332–42.
Article
CAS
PubMed
Google Scholar
Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol. 2015;6:242. https://doi.org/10.3389/fmicb.2015.00242.
Article
PubMed
PubMed Central
Google Scholar
Holloway BW, Fargie B. Fertility factors and genetic linkage in Pseudomonas aeruginosa. J Bacteriol. 1960;80:362–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2013;41(Database issue):D8–20.
Google Scholar
Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stanisich VA, Holloway BW. A mutant sex factor of Pseudomonas aeruginosa. Genet Res. 1972;19:91–108.
Article
CAS
PubMed
Google Scholar
Kung AHC, Lee BTO. Genetic analysis of radiation sensitive and chemical-mutagen sensitive mutants of Pseudomonas aeruginosa. Mutat Res Mol Mech Mutagen. 1975;27:191–9.
Article
CAS
Google Scholar
Rolfe B, Holloway BW. Genetic control of DNA specificity in Pseudomonas aeruginosa. Genet Res. 1968;12:99–102.
Article
CAS
PubMed
Google Scholar
Lasocki K, Bartosik AA, Mierzejewska J, Thomas CM, Jagura-Burdzy G. Deletion of the parA (soj) homologue in Pseudomonas aeruginosa causes ParB instability and affects growth rate, chromosome segregation, and motility. J Bacteriol. 2007;189:5762–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kawalek A, Bartosik AA, Glabski K, Jagura-Burdzy G. Pseudomonas aeruginosa partitioning protein ParB acts as a nucleoid-associated protein binding to multiple copies of a parS-related motif. Nucleic Acids Res. 2018;46:4592–606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bartosik AA, Glabski K, Jecz P, Mikulska S, Fogtman A, Koblowska M, et al. Transcriptional profiling of ParA and ParB mutants in actively dividing cells of an opportunistic human pathogen Pseudomonas aeruginosa. PLoS One. 2014;9:e87276.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawalek A, Glabski K, Bartosik AA, Fogtman A, Jagura-Burdzy G. Increased ParB level affects expression of stress response, adaptation and virulence operons and potentiates repression of promoters adjacent to the high affinity binding sites parS3 and parS4 in Pseudomonas aeruginosa. PLoS One. 2017;12:e0181726.
Article
PubMed
PubMed Central
Google Scholar
Ciok A, Budzik K, Zdanowski MK, Gawor J, Grzesiak J, Decewicz P, et al. Plasmids of psychrotolerant Polaromonas spp. isolated from arctic and antarctic glaciers – diversity and role in adaptation to polar environments. Front Microbiol. 2018;9:1285. https://doi.org/10.3389/fmicb.2018.01285.
Article
PubMed
PubMed Central
Google Scholar
Komatsu T, Moriya K, Horikoshi K. Preparation of organic solvent-tolerant mutants from Pseudomonas aeruginosa strain PAO1161. Biosci Biotechnol Biochem. 1994;58:1754–5.
Article
CAS
PubMed
Google Scholar
Manavathi B, Pakala SB, Gorla P, Merrick M, Siddavattam D. Influence of zinc and cobalt on expression and activity of parathion hydrolase from Flavobacterium sp. ATCC27551. Pestic Biochem Physiol. 2005;83:37–45.
Article
CAS
Google Scholar
Kujawa M, Lirski M, Ziecina M, Drabinska J, Modzelan M, Kraszewska E. Nudix-type RNA pyrophosphohydrolase provides homeostasis of virulence factor pyocyanin and functions as a global regulator in Pseudomonas aeruginosa. Mol Microbiol. 2017;106:381–94.
Article
CAS
PubMed
Google Scholar
Kawalek A, Modrzejewska M, Zieniuk B, Bartosik AA, Jagura-Burdzy G. Interaction of ArmZ with the DNA-binding domain of MexZ induces expression of mexXY multidrug efflux pump genes and antimicrobial resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019. https://doi.org/10.1128/AAC.01199-19.
Papagiannitsis CC, Studentova V, Ruzicka F, Tejkalova R, Hrabak J. Molecular characterization of metallo-β-lactamase-producing Pseudomonas aeruginosa in a Czech hospital (2009-2011). J Med Microbiol. 2013;62(Pt 6):945–7.
Article
CAS
PubMed
Google Scholar
Laudy AE, Osińska P, Namysłowska A, Zając O, Tyski S. Modification of the susceptibility of gram-negative rods producing ESβLS to β-lactams by the efflux phenomenon. PLoS One. 2015;10:e0119997.
Article
PubMed
PubMed Central
CAS
Google Scholar
Romaniuk K, Krucon T, Decewicz P, Gorecki A, Dziewit L. Molecular characterization of the pA3J1 plasmid from the psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_J3. Plasmid. 2017;92:49–56.
Article
CAS
PubMed
Google Scholar
Yin Y, Withers TR, Johnson SL, Yu HD. Draft genome sequence of a mucoid isolate of Pseudomonas aeruginosa strain C7447m from a patient with cystic fibrosis. Genome Announc. 2013;1:e00837–13.
PubMed
PubMed Central
Google Scholar
Liu M, Li X, Xie Y, Bi D, Sun J, Li J, et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky1123.
Article
PubMed Central
CAS
Google Scholar
Qiu X, Gurkar AU, Lory S. Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2006;103:19830–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khelik K, Lagesen K, Sandve GK, Rognes T, Nederbragt AJ. NucDiff: in-depth characterization and annotation of differences between two sets of DNA sequences. BMC Bioinformatics. 2017;18:338.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cianciotto NP, White RC. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun. 2017;85:e00014–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ball G, Durand É, Lazdunski A, Filloux A. A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol. 2002;43:475–85.
Article
CAS
PubMed
Google Scholar
Köhler T, Epp SF, Curty LK, Pechère J-C. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J Bacteriol. 1999;181:6300–5.
Article
PubMed
PubMed Central
Google Scholar
Uwate M, Ichise Y, Shirai A, Omasa T, Nakae T, Maseda H. Two routes of MexS-MexT-mediated regulation of MexEF-OprN and MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Microbiol Immunol. 2013;57:263–72.
Article
CAS
PubMed
Google Scholar
Maseda H, Saito K, Nakajima A, Nakae T. Variation of the mexT gene, a regulator of the MexEF-OprN efflux pump expression in wild-type strains of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2000;192:107–12.
Article
CAS
PubMed
Google Scholar
Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell. 2001;104:901–12.
Article
CAS
PubMed
Google Scholar
Severinov K, Soushko M, Goldfarb A, Nikiforov V. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the beta subunit of Escherichia coli RNA polymerase. J Biol Chem. 1993;268:14820–5.
CAS
PubMed
Google Scholar
Hall AR, Iles JC, MacLean RC. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. Genetics. 2011;187:817–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jatsenko T, Tover A, Tegova R, Kivisaar M. Molecular characterization of Rif(r) mutations in Pseudomonas aeruginosa and Pseudomonas putida. Mutat Res. 2010;683:106–14.
Article
CAS
PubMed
Google Scholar
Withers TR, Johnson SL, Yu HD. Draft genome sequence for Pseudomonas aeruginosa strain PAO579, a mucoid derivative of PAO381. J Bacteriol. 2012;194:6617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ryan Withers T, Heath Damron F, Yin Y, Yu HD. Truncation of type IV pilin induces mucoidy in Pseudomonas aeruginosa strain PAO579. MicrobiolOpen. 2013;2:459–70.
Article
CAS
Google Scholar
Yin Y, Withers TR, Govan JRW, Johnson SL, Yu HD. Draft genome sequence of a stable mucoid strain of Pseudomonas aeruginosa PAO581 with a mucA25 mutation. Genome Announc. 2013;1:e00837–13. https://doi.org/10.1128/genomeA.00834-13.
Article
PubMed
PubMed Central
Google Scholar
Doberenz S, Eckweiler D, Reichert O, Jensen V, Bunk B, Spröer C, et al. Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles. mBio. 2017;8:e02312–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fischer S, Römling U, Tümmler B. A unique methylation pattern by a type I HsdM methyltransferase prepares for DpnI rare cutting sites in the Pseudomonas aeruginosa PAO1 genome. FEMS Microbiol Lett. 2019;366:fnz053.
Article
CAS
PubMed
Google Scholar
Aravind L, Leipe DD, Koonin EV. Toprim—a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic Acids Res. 1998;26:4205–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schiltz CJ, Lee A, Partlow EA, Hosford CJ, Chappie JS. Structural characterization of class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Res. 2019;47:9448–63.
Article
PubMed
PubMed Central
Google Scholar
Marx CJ, Lidstrom ME. Development of improved versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiol Read Engl. 2001;147(Pt 8):2065–75.
Article
CAS
Google Scholar
Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166:175–6.
Article
CAS
PubMed
Google Scholar
Murray NE. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev. 2000;64:412–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG. Type I restriction enzymes and their relatives. Nucleic Acids Res. 2014;42:20–44.
Article
CAS
PubMed
Google Scholar
De Ste CM, Vacca I, Kwun MJ, Ralph JD, Bentley SD, Haigh R, et al. Phase-variable methylation and epigenetic regulation by type I restriction–modification systems. FEMS Microbiol Rev. 2017;41(Supp_1):S3–15.
Article
Google Scholar
He J, Baldini RL, Déziel E, Saucier M, Zhang Q, Liberati NT, et al. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A. 2004;101:2530–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Battle SE, Meyer F, Rello J, Kung VL, Hauser AR. Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a Pseudomonas aeruginosa isolate in mammals. J Bacteriol. 2008;190:7130–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mavrodi DV, Loper JE, Paulsen IT, Thomashow LS. Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 2009;9:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Klockgether J, Reva O, Larbig K, Tümmler B. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. J Bacteriol. 2004;186:518–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson CM, Grossman AD. Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet. 2015;49:577–601.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev. 2017;41:512–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol. 2010;8:552–63.
Article
CAS
PubMed
Google Scholar
Grindley NDF, Whiteson KL, Rice PA. Mechanisms of site-specific recombination. Annu Rev Biochem. 2006;75:567–605.
Article
CAS
PubMed
Google Scholar
El-Sayed AK, Hothersall J, Thomas CM. Quorum-sensing-dependent regulation of biosynthesis of the polyketide antibiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiol Read Engl. 2001;147(Pt 8):2127–39.
Article
CAS
Google Scholar
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbour, N.Y. 1989.
Kahn M, Kolter R, Thomas C, Figurski D, Meyer R, Remaut E, et al. Plasmid cloning vehicles derived from plasmids ColE1, F, R6K, and RK2. Methods Enzymol. 1979;68:268–80. https://doi.org/10.1016/0076-6879(79)68019-9 Elsevier.
Article
CAS
PubMed
Google Scholar
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13:e1005595.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fellay R, Frey J, Krisch H. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. Gene. 1987;52:147–54.
Article
CAS
PubMed
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–2.
Article
Google Scholar
De Coster W, D’Hert S, Schultz DT, Cruts M, Van Broeckhoven C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics Oxf Engl. 2015;31:3210–2.
Article
CAS
Google Scholar
Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Irani VR, Rowe JJ. Enhancement of transformation in Pseudomonas aeruginosa PAO1 by Mg2+ and heat. BioTechniques. 1997;22:54–6.
Article
CAS
PubMed
Google Scholar
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guy L, Kultima JR, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinforma Oxf Engl. 2010;26:2334–5.
Article
CAS
Google Scholar