FAO. The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. ROME License: CC BY-NC-SA 30 IGO. 2018.
Lafferty KD, Harvell CD, Conrad JM, Friedman CS, Kent ML, Kuris AM, et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu Rev Mar Sci. 2015;7:471–96.
Article
Google Scholar
Brudeseth BE, Wiulsrød R, Fredriksen BN, Lindmo K, Løkling K-E, Bordevik M, et al. Status and future perspectives of vaccines for industrialised fin-fish farming. Fish Shellfish Immunol. 2013;35(6):1759–68.
Article
CAS
PubMed
Google Scholar
Embregts CW, Forlenza M. Oral vaccination of fish: lessons from humans and veterinary species. Dev Comp Immunol. 2016;64:118–37.
Article
CAS
PubMed
Google Scholar
Gudding R, Lillehaug A, Evensen O. Fish vaccination: John Wiley & Sons; 2014.
Gudding R, van Muiswinkel WB. A history of fish vaccination: science-based disease prevention in aquaculture. Fish Shellfish Immunol. 2013;35(6):1683–8.
Article
CAS
PubMed
Google Scholar
Chevassus B, Dorson M. Genetics of resistance to disease in fishes. Aquaculture. 1990;85(1):83–107.
Article
Google Scholar
Fjalestad KT, Gjedrem T, Gjerde B. Genetic improvement of disease resistance in fish: an overview. Aquaculture. 1993;111(1):65–74.
Article
Google Scholar
Stear M, Nikbakht G, Matthews L, Jonsson N. Breeding for disease resistance in livestock and fish. Anim Sci Rev. 2012;7:1–10.
Google Scholar
Wiegertjes GF, Stet RM, Parmentier HK, van Muiswinkel WB. Immunogenetics of disease resistance in fish: a comparative approach. Dev Comp Immunol. 1996;20(6):365–81.
Article
CAS
PubMed
Google Scholar
Adamek M, Steinhagen D, Irnazarow I. Hikima J-i, Jung T-S, Aoki T. biology and host response to cyprinid herpesvirus 3 infection in common carp. DeveComp Immunol. 2014;43(2):151–9.
CAS
Google Scholar
Ilouze M, Davidovich M, Diamant A, Kotler M, Dishon A. The outbreak of carp disease caused by CyHV-3 as a model for new emerging viral diseases in aquaculture: a review. Ecol Res. 2011;26(5):885–92.
Article
Google Scholar
Rakus K, Ouyang P, Boutier M, Ronsmans M, Reschner A, Vancsok C, et al. Cyprinid herpesvirus 3: an interesting virus for applied and fundamental research. Vet Res. 2013;44(1):85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dixon P, Joiner C, Way K, Reese R, Jeney G, Jeney Z. Comparison of the resistance of selected families of common carp, Cyprinus carpio L., to koi herpesvirus: preliminary study. J Fish Dis. 2009;32(12):1035–9.
Article
CAS
PubMed
Google Scholar
Ødegård J, Olesen I, Dixon P, Jeney Z, Nielsen H-M, Way K, et al. Genetic analysis of common carp (Cyprinus carpio) strains. II: resistance to koi herpesvirus and Aeromonas hydrophila and their relationship with pond survival. Aquaculture. 2010;304(1):7–13.
Article
CAS
Google Scholar
Piačková V, Flajšhans M, Pokorova D, Reschova S, Gela D, Čížek A, et al. Sensitivity of common carp, Cyprinus carpio L., strains and crossbreeds reared in the Czech Republic to infection by cyprinid herpesvirus 3 (CyHV-3; KHV). J Fish Dis. 2013;36(1):75–80.
Article
PubMed
Google Scholar
Shapira Y, Magen Y, Zak T, Kotler M, Hulata G, Levavi-Sivan B. Differential resistance to koi herpes virus (KHV)/carp interstitial nephritis and gill necrosis virus (CNGV) among common carp (Cyprinus carpio L.) strains and crossbreds. Aquaculture. 2005;245(1):1–11.
Article
Google Scholar
Tadmor-Levi R, Asoulin E, Hulata G, David L. Studying the genetics of resistance to CyHV-3 disease using introgression from feral to cultured common carp strains. Front Genet. 2017;8:24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zak T, Perelberg A, Magen I, Milstein A, Joseph D. Heterosis in the growth rate of Hungarian-Israeli common carp crossbreeds and evaluation of their sensitivity to koi herpes virus (KHV) disease. Isr J Aquacult Bamidgeh. 2007;59(2):63–72.
Google Scholar
Moen T, Torgersen J, Santi N, Davidson WS, Baranski M, Ødegård J, et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics. 2015;200(4):1313–26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Price DJ. Genetics of susceptibility and resistance to disease in fishes. J Fish Biol. 1985;26(5):509–19.
Article
Google Scholar
Uribe C, Folch H, Enriquez R, Moran G. Innate and adaptive immunity in teleost fish: a review. Vet Med. 2011;56(10):486–503.
Article
CAS
Google Scholar
Yáñez JM, Houston RD, Newman S. Genetics and genomics of disease resistance in salmonid species. Front Genet. 2014;5:415.
PubMed
PubMed Central
Google Scholar
Bird S, Tafalla C. Teleost chemokines and their receptors. Biology. 2015;4(4):756.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palti Y. Toll-like receptors in bony fish: from genomics to function. Dev Comp Immunol. 2011;35(12):1263.
Article
CAS
PubMed
Google Scholar
Zou J, Secombes C. The function of fish cytokines. Biology. 2016;5(2):23.
Article
PubMed Central
CAS
Google Scholar
David L, Blum S, Feldman MW, Lavi U, Hillel J. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol. 2003;20(9):1425–34 PubMed PMID: 12832638.
Article
CAS
PubMed
Google Scholar
Petit J, David L, Dirks R, Wiegertjes G. Genomic and transcriptomic approaches to study immunology in cyprinids: what is next? Dev Comp Immunol. 2017;75:48.
Article
CAS
PubMed
Google Scholar
Henkel CV, Dirks RP, Jansen HJ, Forlenza M, Wiegertjes GF, Howe K, et al. Comparison of the exomes of common carp (Cyprinus carpio) and zebrafish (Danio rerio). Zebrafish. 2012;9(2):59–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolder ICRM, van der Plas-Duivesteijn SJ, Tan G, Wiegertjes GF, Forlenza M, Guler AT, et al. A full-body transcriptome and proteome resource for the European common carp. BMC Genomics. 2016;17(1):701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu P, Zhang X, Wang X, Li J, Liu G, Kuang Y, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio. Nat Genet. 2014 11//print;46(11):1212–9.
Article
CAS
PubMed
Google Scholar
Rakus KŁ, Wiegertjes GF, Adamek M, Siwicki AK, Lepa A, Irnazarow I. Resistance of common carp (Cyprinus carpio L.) to cyprinid herpesvirus-3 is influenced by major histocompatibility (MH) class II B gene polymorphism. Fish Shellfish Immunol. 2009;26(5):737–43.
Article
CAS
PubMed
Google Scholar
Kongchum P, Sandel E, Lutzky S, Hallerman EM, Hulata G, David L, et al. Association between IL-10a single nucleotide polymorphisms and resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio). Aquaculture. 2011;315(3):417–21.
Article
CAS
Google Scholar
Palaiokostas C, Robledo D, Vesely T, Prchal M, Pokorova D, Piackova V, et al. Mapping and sequencing of a significant quantitative trait locus affecting resistance to koi Herpesvirus in common carp. G3. 2018;8(11):3507–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tadmor-Levi R, Hulata G, David L. Multiple interacting QTLs affect disease challenge survival in common carp (Cyprinus carpio). Heredity. 2019;123:565–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee X, Yi Y, Weng S, Zeng J, Zhang H, He J, et al. Transcriptomic analysis of koi (Cyprinus carpio) spleen tissue upon cyprinid herpesvirus 3 (CyHV3) infection using next generation sequencing. Fish Shellfish Immunol. 2016;49:213–24.
Article
CAS
PubMed
Google Scholar
Neave MJ, Sunarto A, McColl KA. Transcriptomic analysis of common carp anterior kidney during cyprinid herpesvirus 3 infection: immunoglobulin repertoire and homologue functional divergence. Sci Rep. 2017;7:41531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adamek M, Matras M, Dawson A, Piackova V, Gela D, Kocour M, et al. Type I interferon responses of common carp strains with different levels of resistance to koi herpesvirus disease during infection with CyHV-3 or SVCV. Fish Shellfish Immunol. 2019;87:809–19.
Article
CAS
PubMed
Google Scholar
Verrier ER, Genet C, Laloë D, Jaffrezic F, Rau A, Esquerre D, et al. Genetic and transcriptomic analyses provide new insights on the early antiviral response to VHSV in resistant and susceptible rainbow trout. BMC Genomics. 2018;19(1):482.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dettleff P, Moen T, Santi N, Martinez V. Transcriptomic analysis of spleen infected with infectious salmon anemia virus reveals distinct pattern of viral replication on resistant and susceptible Atlantic salmon (Salmo salar). Fish Shellfish Immunol. 2017;61:187–93.
Article
CAS
PubMed
Google Scholar
Robledo D, Taggart JB, Ireland JH, McAndrew BJ, Starkey WG, Haley CS, et al. Gene expression comparison of resistant and susceptible Atlantic salmon fry challenged with infectious pancreatic necrosis virus reveals a marked contrast in immune response. BMC Genomics. 2016;17(1):1–16.
Article
CAS
Google Scholar
Nomiyama H, Hieshima K, Osada N, Kato-Unoki Y, Otsuka-Ono K, Takegawa S, et al. Extensive expansion and diversification of the chemokine gene family in zebrafish: identification of a novel chemokine subfamily CX. BMC Genomics. 2008;9(1):222.
Article
PubMed
PubMed Central
CAS
Google Scholar
Alejo A, Tafalla C. Chemokines in teleost fish species. Dev Comp Immunol. 2011;35(12):1215–22.
Article
CAS
PubMed
Google Scholar
Van Der Aa LM, Chadzinska M, Tijhaar E, Boudinot P, Verburg-van Kemenade BL. CXCL8 chemokines in teleost fish: two lineages with distinct expression profiles during early phases of inflammation. PLoS One. 2010;5(8):e12384.
Article
PubMed
PubMed Central
CAS
Google Scholar
Boudinot P, Langevin C, Secombes CJ, Levraud J-P. The peculiar characteristics of fish type I interferons. Viruses. 2016;8(11):298.
Article
PubMed Central
CAS
Google Scholar
Zou J, Secombes C. Teleost fish interferons and their role in immunity. Dev Comp Immunol. 2011;35(12):1376.
Article
CAS
PubMed
Google Scholar
Verrier ER, Langevin C, Tohry C, Houel A, Ducrocq V, Benmansour A, et al. Genetic resistance to rhabdovirus infection in teleost fish is paralleled to the derived cell resistance status. PLoS One. 2012;7(4):e33935.
Article
CAS
PubMed
PubMed Central
Google Scholar
Esche C, Stellato C, Beck LA. Chemokines: key players in innate and adaptive immunity. J Investig Dermatol. 2005;125(4):615–28.
Article
CAS
PubMed
Google Scholar
Cai W, Tao J, Zhang X, Tian X, Liu T, Feng X, et al. Contribution of homeostatic chemokines CCL19 and CCL21 and their receptor CCR7 to coronary artery disease. Arterioscler Thromb Vasc Biol. 2014;34(9):1933.
Article
CAS
PubMed
Google Scholar
Laing KJ, Secombes CJ. Trout CC chemokines: comparison of their sequences and expression patterns. Mol Immunol. 2004;41(8):793–808.
Article
CAS
PubMed
Google Scholar
Torraca V, Cui C, Boland R, Bebelman J-P, van der Sar AM, Smit MJ, et al. The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Dis Model Mech. 2015;8:253–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Oliveira S, Reyes-Aldasoro CC, Candel S, Renshaw SA, Mulero V, Calado Â. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol. 2013;190(8):4349–59.
Article
PubMed
CAS
Google Scholar
Hashimoto Y, Moki T, Takizawa T, Shiratsuchi A, Nakanishi Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J Immunol. 2007;178(4):2448–57.
Article
CAS
PubMed
Google Scholar
Galani IE, Andreakos E. Neutrophils in viral infections: current concepts and caveats. J Leukoc Biol. 2015;98(4):557–64.
Article
CAS
PubMed
Google Scholar
Tumpey TM, Chen S-H, Oakes JE, Lausch RN. Neutrophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. J Virol. 1996;70(2):898–904.
CAS
PubMed
PubMed Central
Google Scholar
Zhou J, Stohlman SA, Hinton DR, Marten NW. Neutrophils promote mononuclear cell infiltration during viral-induced encephalitis. J Immunol. 2003;170(6):3331–6.
Article
CAS
PubMed
Google Scholar
Wohlfarth G, Moav R, Hulata G, Beiles A. Genetic variation in seine escapability of the common carp. Aquaculture. 1975;5(4):375–87.
Article
Google Scholar
Pokorný J, Flajšhans M, Hartvich P, Kvasnička P, Pružina I. Atlas of common carp populations bred in the Czech Republic. Praha: Victoria Publishing; 1995.
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-Seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol. 1995:289–300.
Google Scholar
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.
Article
PubMed
PubMed Central
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12(1):59.
Article
PubMed
CAS
Google Scholar
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du Z, Zhou X, Ling Y, Zhang Z, Su Z. agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 2010;38(suppl_2):W64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30(12):2725.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bar I, Kaddar E, Velan A, David L. Melanocortin receptor 1 and black pigmentation in the Japanese ornamental carp (Cyprinus carpio var. koi). Frontiers in. Genetics. 2013;4:6.
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45–e.
Article
CAS
PubMed
PubMed Central
Google Scholar