Arnison PG, Bibb MJ, Bierbaum G, Bowers AA, Bugni TS, Bulaj G, Camarero JA, Campopiano DJ, Challis GL, Clardy J, et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat Prod Rep. 2013;30(1):108–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jabés D, Brunati C, Candiani G, Riva S, Romanó G, Donadio S. Efficacy of the new lantibiotic NAI-107 in experimental infections induced by multidrug-resistant gram-positive pathogens. Antimicrob Agents Chemother. 2011;55(4):1671–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mathur H, O'Connor PM, Hill C, Cotter PD, Ross RP. Analysis of anti-Clostridium difficile activity of thuricin CD, vancomycin, metronidazole, ramoplanin, and actagardine, both singly and in paired combinations. Antimicrob Agents Chemother. 2013;57(6):2882–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldstein BP, Wei J, Greenberg K, Novick R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J Antimicrob Chemother. 1998;42(2):277–8.
Article
CAS
PubMed
Google Scholar
Hirsch A. The assay of the antibiotic nisin. J Gen Microbiol. 1950;4:70–83.
Article
CAS
PubMed
Google Scholar
Mohr KI, Volz C, Jansen R, Wray V, Hoffmann J, Bernecker S, Wink J, Gerth K, Stadler M, Müller R. Pinensins: the first antifungal lantibiotics. Angew Chem Int Ed. 2015;54(38):11254–8.
Article
CAS
Google Scholar
Férir G, Petrova MI, Andrei G, Huskens D, Hoorelbeke B, Snoeck R, Vanderleyden J, Balzarini J, Bartoschek S, Brönstrup M, et al. The lantibiotic peptide labyrinthopeptin A1 demonstrates broad anti-HIV and anti-HSV activity with potential for microbicidal applications. PLoS One. 2013;8(5):e64010.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smith TE, Pond CD, Pierce E, Harmer ZP, Kwan J, Zachariah MM, Harper MK, Wyche TP, Matainaho TK, Bugni TS, et al. Accessing chemical diversity from the uncultivated symbionts of small marine animals. Nat Chem Biol. 2018;14(2):179–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Iorio M, Sasso O, Maffioli SI, Bertorelli R, Monciardini P, Sosio M, Bonezzi F, Summa M, Brunati C, Bordoni R, et al. A glycosylated, labionin-containing lanthipeptide with marked antinociceptive activity. ACS Chem Biol. 2014;9(2):398–404.
Article
CAS
PubMed
Google Scholar
Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Guhring H, Vertesy L, Wink J, Hoffmann H, et al. Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angew Chem Int Ed. 2010;49(6):1151–4.
Article
CAS
Google Scholar
Kim SG, Becattini S, Moody TU, Shliaha PV, Littmann ER, Seok R, Gjonbalaj M, Eaton V, Fontana E, Amoretti L, et al. Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus. Nature. 2019;572(7771):665–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duan Y, Llorente C, Lang S, Brandl K, Chu H, Jiang L, White RC, Clarke TH, Nguyen K, Torralba M, et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature. 2019;575(7783):505–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Repka LM, Chekan JR, Nair SK, van der Donk WA. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem Rev. 2017;117:5457–520.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega MA, Hao Y, Zhang Q, Walker MC, van der Donk WA, Nair SK. Structure and mechanism of the tRNA-dependent lantibiotic dehydratase NisB. Nature. 2015;517(7535):509–12.
Article
CAS
PubMed
Google Scholar
Li B, Yu JP, Brunzelle JS, Moll GN, van der Donk WA, Nair SK. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. Science. 2006;311(5766):1464–7.
Article
CAS
PubMed
Google Scholar
Wang H, van der Donk WA. Biosynthesis of the class III lantipeptide catenulipeptin. ACS Chem Biol. 2012;7:1529–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong SH, Tang W, Lukk T, Yu Y, Nair SK, van der Donk WA. The enterococcal cytolysin synthetase has an unanticipated lipid kinase fold. eLife. 2015;4:e07607.
Article
PubMed Central
Google Scholar
Müller WM, Schmiederer T, Ensle P, Süssmuth RD. In vitro biosynthesis of the prepeptide of type-III lantibiotic labyrinthopeptin A2 including formation of a C-C bond as a post-translational modification. Angew Chem Int Ed. 2010;49(13):2436–40.
Article
CAS
Google Scholar
Goto Y, Li B, Claesen J, Shi Y, Bibb MJ, van der Donk WA. Discovery of unique lanthionine synthetases reveals new mechanistic and evolutionary insights. PLoS Biol. 2010;8(3):e1000339.
Article
PubMed
PubMed Central
CAS
Google Scholar
Funk MA, van der Donk WA. Ribosomal natural products, tailored to fit. Acc Chem Res. 2017;50(7):1577–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skinnider MA, Johnston CW, Edgar RE, Dejong CA, Merwin NJ, Rees PN, Magarvey NA. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining. Proc Natl Acad Sci U S A. 2016;113(42):E6343–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letzel AC, Pidot SJ, Hertweck C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genomics. 2014;15:983.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singh M, Sareen D. Novel LanT associated lantibiotic clusters identified by genome database mining. PLoS One. 2014;9(3):e91352.
Article
PubMed
PubMed Central
Google Scholar
Begley M, Cotter PD, Hill C, Ross RP. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl Environ Microbiol. 2009;75(17):5451–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Doroghazi JR, Zhao X, Walker MC, van der Donk WA. Expanded natural product diversity revealed by analysis of lanthipeptide-like gene clusters in actinobacteria. Appl Environ Microbiol. 2015;81(13):4339–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azevedo AC, Bento CB, Ruiz JC, Queiroz MV, Mantovani HC. Distribution and genetic diversity of bacteriocin gene clusters in rumen microbial genomes. Appl Environ Microbiol. 2015;81(20):7290–304.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marsh AJ, O'Sullivan O, Ross RP, Cotter PD, Hill C. In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics. 2010;11(679):1–21.
Google Scholar
Poorinmohammad N, Bagheban-Shemirani R, Hamedi J. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria. Antonie Van Leeuwenhoek. 2019;112(10):1477–99.
Article
CAS
PubMed
Google Scholar
van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018;46(W1):W278–w281.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dischinger J, Josten M, Szekat C, Sahl HG, Bierbaum G. Production of the novel two-peptide lantibiotic lichenicidin by Bacillus licheniformis DSM 13. PLoS One. 2009;4(8):e6788.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tracanna V, de Jong A, Medema MH, Kuipers OP. Mining prokaryotes for antimicrobial compounds: from diversity to function. FEMS Microbiol Rev. 2017;41(3):417–29.
Article
CAS
PubMed
Google Scholar
Merwin NJ, Mousa WK, Dejong CA, Skinnider MA, Cannon MJ, Li HX, Dial K, Gunabalasingam M, Johnston C, Magarvey NA. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products. Proc Natl Acad Sci U S A. 2020;117(1):371–80.
Article
CAS
PubMed
Google Scholar
Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI, Mitchell DA. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat Chem Biol. 2017;13(5):470–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–85.
Article
CAS
PubMed
Google Scholar
Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren JY, Li WW, Noble WS. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:W202–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu ST, Breukink E, Tischenko E, Lutters MA, De Kruijff B, Kaptein R, Bonvin AM, Van Nuland NA. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol. 2004;11(10):963–7.
Article
CAS
PubMed
Google Scholar
Hsu ST, Breukink E, Bierbaum G, Sahl HG, de Kruijff B, Kaptein R, van Nuland NA, Bonvin AM. NMR study of mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. J Biol Chem. 2003;278(15):13110–7.
Article
CAS
PubMed
Google Scholar
Szekat C, Jack RW, Skutlarek D, Farber H, Bierbaum G. Construction of an expression system for site-directed mutagenesis of the lantibiotic mersacidin. Appl Environ Microbiol. 2003;69(7):3777–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Meer JR, Rollema HS, Siezen RJ, Beerthuyzen MM, Kuipers OP, de Vos WM. Influence of amino acid substitutions in the nisin leader peptide on biosynthesis and secretion of nisin by Lactococcus lactis. J Biol Chem. 1994;269(5):3555–62.
PubMed
Google Scholar
Håvarstein LS, Diep DB, Nes IF. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol. 1995;16(2):229–40.
Article
PubMed
Google Scholar
Bobeica SC, Dong SH, Huo L, Mazo N, McLaughlin MI, Jimenez-Oses G, Nair SK, van der Donk WA. Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease. eLife. 2019;8.
Dirix G, Monsieurs P, Marchal K, Vanderleyden J, Michiels J. Screening genomes of gram-positive bacteria for double-glycine-motif-containing peptides. Microbiology. 2004;150(Pt 5):1121–6.
Article
CAS
PubMed
Google Scholar
Völler GH, Krawczyk JM, Pesic A, Krawczyk B, Nachtigall J, Süssmuth RD. Characterization of new class III lantibiotics-erythreapeptin, avermipeptin and griseopeptin from Saccharopolyspora erythraea, Streptomyces avermitilis and Streptomyces griseus demonstrates stepwise N-terminal leader processing. ChemBioChem. 2012;13:1174–83.
Article
PubMed
CAS
Google Scholar
Haft DH, Basu MK, Mitchell DA. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biol. 2010;8:70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Patton GC, Paul M, Cooper LE, Chatterjee C, van der Donk WA. The importance of the leader sequence for directing lanthionine formation in lacticin 481. Biochemistry. 2008;47(28):7342–51.
Article
CAS
PubMed
Google Scholar
Müller WM, Ensle P, Krawczyk B, Süssmuth RD. Leader peptide-directed processing of labyrinthopeptin A2 precursor peptide by the modifying enzyme LabKC. Biochemistry. 2011;50(39):8362–73.
Article
PubMed
CAS
Google Scholar
Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Blin K, Kazempour D, Wohlleben W, Weber T. Improved lanthipeptide detection and prediction for antiSMASH. PLoS One. 2014;9(7):e103665.
Li B, Sher D, Kelly L, Shi Y, Huang K, Knerr PJ, Joewono I, Rusch D, Chisholm SW, van der Donk WA. Catalytic promiscuity in the biosynthesis of cyclic peptide secondary metabolites in planktonic marine cyanobacteria. Proc Natl Acad Sci U S A. 2010;107(23):10430–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao X, van der Donk WA. Structural characterization and bioactivity analysis of the two-component lantibiotic Flv system from a ruminant bacterium. Cell Chem Biol. 2016;23(2):246–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerlt JA, Bouvier JT, Davidson DB, Imker HJ, Sadkhin B, Slater DR, Whalen KL. Enzyme function initiative-enzyme similarity tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim Biophys Acta. 2015;1854(8):1019–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, Blin K, de Bruijn I, Chooi YH, Claesen J, Coates RC, et al. Minimum information about a biosynthetic gene cluster. Nat Chem Biol. 2015;11(9):625–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acedo JZ, Bothwell IR, An L, Trouth A, Frazier C, van der Donk WA. O-methyltransferase-mediated incorporation of a β-amino acid in Lanthipeptides. J Am Chem Soc. 2019;141(42):16790–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cubillos-Ruiz A, Berta-Thompson JW, Becker JW, van der Donk WA, Chisholm SW. Evolutionary radiation of lanthipeptides in marine cyanobacteria. Proc Natl Acad Sci U S A. 2017;114(27):E5424–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hudson GA, Zhang Z, Tietz JI, Mitchell DA, van der Donk WA. In vitro biosynthesis of the core scaffold of the thiopeptide thiomuracin. J Am Chem Soc. 2015;137(51):16012–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wever WJ, Bogart JW, Baccile JA, Chan AN, Schroeder FC, Bowers AA. Chemoenzymatic synthesis of thiazolyl peptide natural products featuring an enzyme-catalyzed formal [4 + 2] cycloaddition. J Am Chem Soc. 2015;137(10):3494–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Hudson GA, Mahanta N, Tietz JI, van der Donk WA, Mitchell DA. Biosynthetic timing and substrate specificity for the Thiopeptide Thiomuracin. J Am Chem Soc. 2016;138(48):15511–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cogan DP, Hudson GA, Zhang Z, Pogorelov TV, van der Donk WA, Mitchell DA, Nair SK. Structural insights into enzymatic [4+2] aza-cycloaddition in thiopeptide antibiotic biosynthesis. Proc Natl Acad Sci U S A. 2017;114(49):12928–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kupke T, Stevanovic S, Sahl HG, Götz F. Purification and characterization of EpiD, a flavoprotein involved in the biosynthesis of the lantibiotic epidermin. J Bacteriol. 1992;174(16):5354–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Majer F, Schmid DG, Altena K, Bierbaum G, Kupke T. The flavoprotein MrsD catalyzes the oxidative decarboxylation reaction involved in formation of the peptidoglycan biosynthesis inhibitor mersacidin. J Bacteriol. 2002;184(5):1234–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortega MA, Cogan DP, Mukherjee S, Garg N, Li B, Thibodeaux GN, Maffioli S, Donadio S, Sosio M, Escano J, et al. Two flavoenzymes install 5-chlorotryptophan and 2-aminovinyl cysteine during the biosynthesis of the lantibiotic NAI-107. ACS Chem Biol. 2017;12(2):548–57.
Wiebach V, Mainz A, Siegert MJ, Jungmann NA, Lesquame G, Tirat S, Dreux-Zigha A, Aszodi J, Le Beller D, Süssmuth RD. The anti-staphylococcal lipolanthines are ribosomally synthesized lipopeptides. Nat Chem Biol. 2018;14(7):652–4.
Article
CAS
PubMed
Google Scholar
Mo T, Yuan H, Wang F, Ma S, Wang J, Li T, Liu G, Yu S, Tan X, Ding W, et al. Convergent evolution of the Cys decarboxylases involved in aminovinyl-cysteine (AviCys) biosynthesis. FEBS Lett. 2019;593(6):573–80.
Article
CAS
PubMed
Google Scholar
Shi Y, Bueno A, van der Donk WA. Heterologous production of the lantibiotic Ala (0) actagardine in Escherichia coli. Chem Commun. 2012;48(89):10966–8.
Article
CAS
Google Scholar
Lohans CT, Li JL, Vederas JC. Structure and biosynthesis of carnolysin, a homologue of enterococcal cytolysin with D-amino acids. J Am Chem Soc. 2014;136:13150–3.
Article
CAS
PubMed
Google Scholar
Huo L, van der Donk WA. Discovery and characterization of bicereucin, an unusual D-amino acid-containing mixed two-component lantibiotic. J Am Chem Soc. 2016;138(16):5254–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotter PD, O'Connor PM, Draper LA, Lawton EM, Deegan LH, Hill C, Ross RP. Posttranslational conversion of L-serines to D-alanines is vital for optimal production and activity of the lantibiotic lacticin 3147. Proc Natl Acad Sci U S A. 2005;102(51):18584–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Velásquez JE, Zhang X, van der Donk WA. Biosynthesis of the antimicrobial peptide epilancin 15X and its N-terminal lactate moiety. Chem Biol. 2011;18:857–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burkhart BJ, Schwalen C, Mann G, Naismith JH, Mitchell DA. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem Rev. 2017;117(8):5389–456.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Q, Yu Y, Velásquez JE, van der Donk WA. Evolution of lanthipeptide synthetases. Proc Natl Acad Sci U S A. 2012;109(45):18361–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng M, van der Donk WA, Chen J. Lanthionine synthetase C-like protein 2 (LanCL2) is a novel regulator of Akt. Mol Biol Cell. 2014;25(24):3954–61.
Article
PubMed
PubMed Central
Google Scholar
Singh M, Chaudhary S, Sareen D. Roseocin, a novel two-component lantibiotic from an actinomycete. Mol Microbiol. 2020;113(2):326–37.
Ryan MP, Jack RW, Josten M, Sahl HG, Jung G, Ross RP, Hill C. Extensive post-translational modification, including serine to D-alanine conversion, in the two-component lantibiotic, lacticin 3147. J Biol Chem. 1999;274(53):37544–50.
Article
CAS
PubMed
Google Scholar
Martin NI, Sprules T, Carpenter MR, Cotter PD, Hill C, Ross RP, Vederas JC. Structural characterization of lacticin 3147, a two-peptide lantibiotic with synergistic activity. Biochemistry. 2004;43(11):3049–56.
Article
CAS
PubMed
Google Scholar
Kodani S, Hudson ME, Durrant MC, Buttner MJ, Nodwell JR, Willey JM. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci U S A. 2004;101(31):11448–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garneau S, Martin NI, Vederas JC. Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie. 2002;84(5–6):577–92.
Article
CAS
PubMed
Google Scholar
Shenkarev ZO, Finkina EI, Nurmukhamedova EK, Balandin SV, Mineev KS, Nadezhdin KD, Yakimenko ZA, Tagaev AA, Temirov YV, Arseniev AS, et al. Isolation, structure elucidation, and synergistic antibacterial activity of a novel two-component lantibiotic lichenicidin from Bacillus licheniformis VK21. Biochemistry. 2010;49(30):6462–72.
Article
CAS
PubMed
Google Scholar
Caetano T, Krawczyk JM, Mosker E, Süssmuth RD, Mendo S. Heterologous expression, biosynthesis, and mutagenesis of type II lantibiotics from Bacillus licheniformis in Escherichia coli. Chem Biol. 2011;18(1):90–100.
Article
CAS
PubMed
Google Scholar
McClerren AL, Cooper LE, Quan C, Thomas PM, Kelleher NL, van der Donk WA. Discovery and in vitro biosynthesis of haloduracin, a two-component lantibiotic. Proc Natl Acad Sci U S A. 2006;103(46):17243–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xin BY, Zheng JS, Liu HL, Li JH, Ruan LF, Peng DH, Sajid M, Sun M. Thusin, a novel two-component lantibiotic with potent antimicrobial activity against several gram-positive pathogens. Front Microbiol. 2016;7.
Wiedemann I, Bottiger T, Bonelli RR, Wiese A, Hagge SO, Gutsmann T, Seydel U, Deegan L, Hill C, Ross P, et al. The mode of action of the lantibiotic lacticin 3147--a complex mechanism involving specific interaction of two peptides and the cell wall precursor lipid II. Mol Microbiol. 2006;61(2):285–96.
Article
CAS
PubMed
Google Scholar
Oman TJ, Lupoli TJ, Wang T-SA, Kahne D, Walker S, van der Donk WA. Haloduracin a binds the peptidoglycan precursor lipid II with 2:1 stoichiometry. J Am Chem Soc. 2011;133:17544–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coburn PS, Gilmore MS. The Enterococcus faecalis cytolysin: a novel toxin active against eukaryotic and prokaryotic cells. Cell Microbiol. 2003;5(10):661–9.
Article
CAS
PubMed
Google Scholar
Cox CR, Coburn PS, Gilmore MS. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr Protein Pept Sci. 2005;6(1):77–84.
Article
CAS
PubMed
Google Scholar
Wang J, Zhang L, Teng K, Sun S, Sun Z, Zhong J. Cerecidins, novel lantibiotics from Bacillus cereus with potent antimicrobial activity. Appl Environ Microbiol. 2014;80(8):2633–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krawczyk B, Völler GH, Völler J, Ensle P, Süssmuth RD. Curvopeptin: a new lanthionine-containing class III lantibiotic and its co-substrate promiscuous synthetase. ChemBioChem. 2012;13(14):2065–71.
Article
CAS
PubMed
Google Scholar
Chen S, Xu B, Chen E, Wang J, Lu J, Donadio S, Ge H, Wang H. Zn-dependent bifunctional proteases are responsible for leader peptide processing of class III lanthipeptides. Proc Natl Acad Sci U S A. 2019;116(7):2533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maxson T, Deane CD, Molloy EM, Cox CL, Markley AL, Lee SW, Mitchell DA. HIV protease inhibitors block streptolysin S production. ACS Chem Biol. 2015;10(5):1217–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, et al. The Pfam protein families database in 2019. Nuc Acids Res. 2019;47(D1):D427–32.
Article
CAS
Google Scholar
Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7(10):e1002195.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sievers F, Higgins DG. Clustal omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27(1):135–45.
Article
CAS
PubMed
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2-Approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490.
Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nuc Acids Res. 2019;47(W1):W256–9.
Article
CAS
Google Scholar
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ju KS, Gao J, Doroghazi JR, Wang KK, Thibodeaux CJ, Li S, Metzger E, Fudala J, Su J, Zhang JK, et al. Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes. Proc Natl Acad Sci U S A. 2015;112(39):12175–80.
Article
CAS
PubMed
PubMed Central
Google Scholar