Lilburn TG, Gu J, Cai H, Wang Y. Comparative genomics of the family vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins. BMC Genomics. 2010;11:369. https://doi.org/10.1186/1471-2164-11-369.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriel DG, Tan L, Goh KGK, Phan M-D, Ipe DS, Lo AW, et al. A novel protective vaccine antigen from the core Escherichia coli genome. mSphere. 2016;1. https://doi.org/10.1128/msphere.00326-16.
Sanglas A, Albarral V, Farfán M, Lorén JG, Fusté MC. Evolutionary roots and diversification of the genus Aeromonas. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00127.
Lapierre P, Gogarten JP. Estimating the size of the bacterial pan-genome. Trends Genet. 2009;25:107–10. https://doi.org/10.1016/j.tig.2008.12.004.
Article
CAS
PubMed
Google Scholar
Collins RE, Higgs PG. Testing the infinitely many genes model for the evolution of the bacterial core genome and pangenome. Mol Biol Evol. 2012;29:3413–25. https://doi.org/10.1093/molbev/mss163.
Gordienko EN, Kazanov MD, Gelfand MS. Evolution of pan-genomes of Escherichia coli, Shigella spp., and Salmonella enterica. J Bacteriol. 2013;195:2786–92. https://doi.org/10.1128/jb.02285-12.
Valdivia-Anistro JA, Eguiarte-Fruns LE, Delgado-Sapién G, Gasca-Pineda PM-ZJ, Learned J, Elser JJ, et al. Variability of rRNA operon copy number and growth rate dynamics of Bacillus isolated from an extremely oligotrophic aquatic ecosystem. Front Microbiol. 2016;6. https://doi.org/10.3389/fmicb.2015.01486.
Zhi X-Y, Jiang Z, Yang L-L, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family corynebacteriaceae : a phylogenomics approach. Mol Phylogenet Evol. 2017;107:246–55. https://doi.org/10.1016/j.ympev.2016.11.009.
Article
CAS
PubMed
Google Scholar
Hou Y, Lin S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS One. 2009;4:e6978. https://doi.org/10.1371/journal.pone.0006978.
Article
CAS
PubMed
PubMed Central
Google Scholar
McInerney JO, McNally A, MJ O. Why prokaryotes have pangenomes. Nat Microbiol. 2017;2. https://doi.org/10.1038/nmicrobiol.2017.40.
Kuo C-H, Ochman H. Deletional bias across the three domains of life. Genome Biol Evol. 2009;1:145–52. https://doi.org/10.1093/gbe/evp016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris JJ, Lenski RE, Zinser ER. The black queen hypothesis: Evolution of dependencies through adaptive gene loss. mBio. 2012;3. https://doi.org/10.1128/mbio.00036.
Mas A, Jamshidi S, Lagadeuc Y, Eveillard D, Vandenkoornhuyse P. Beyond the black queen hypothesis. ISME J. 2016;10:2085–91. https://doi.org/10.1038/ismej.2016.22.
Article
PubMed
PubMed Central
Google Scholar
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci. 2005;102:13950–5. https://doi.org/10.1073/pnas.0506758102.
Andreani NA, Hesse E, Vos M. Prokaryote genome fluidity is dependent on effective population size. ISME J. 2017;11:1719–21. https://doi.org/10.1038/ismej.2017.36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith JM, Smith NH, Spratt MOBG. How clonal are bacteria? Proc Natl Acad Sci. 1993;90:4384–8. https://doi.org/10.1073/pnas.90.10.4384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Souza V, Eguiarte LE. Bacteria gone native vs. bacteria gone awry?: Plasmidic transfer and bacterial evolution. Proc Natl Acad Sci. 1997;94:5501–3. https://doi.org/10.1073/pnas.94.11.5501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci. 1998;95:9413–7. https://doi.org/10.1073/pnas.95.16.9413.
Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. https://doi.org/10.1038/35012500.
Article
CAS
PubMed
Google Scholar
Fournier GP, Gogarten JP. Evolution of acetoclastic methanogenesis in methanosarcina via horizontal gene transfer from cellulolytic clostridia. J Bacteriol. 2007;190:1124–7. https://doi.org/10.1128/jb.01382-07.
Article
PubMed
PubMed Central
Google Scholar
Soucy SM, Fullmer MS, Papke RT, Gogarten JP. Inteins as indicators of gene flow in the halobacteria. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00299.
Roze D, Barton NH. The hill Robertson effect and the evolution of recombination. Genetics. 2006;173:1793–811. https://doi.org/10.1534/genetics.106.058586.
Article
CAS
PubMed
PubMed Central
Google Scholar
Comeron JM, Williford A, Kliman RM. The hill Robertson effect: evolutionary consequences of weak selection and linkage in finite populations. Heredity. 2007;100:19–31. https://doi.org/10.1038/sj.hdy.6801059.
Article
CAS
PubMed
Google Scholar
Souza V, Nguyen TT, Hudson RR, Pinero D, Lenski RE. Hierarchical analysis of linkage disequilibrium in rhizobium populations: evidence for sex? Proc Natl Acad Sci. 1992;89:8389–93. https://doi.org/10.1073/pnas.89.17.8389.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bobay L-M, Ochman H. Factors driving effective population size and pan-genome evolution in bacteria. BMC Evol Biol. 2018;18. https://doi.org/10.1186/s12862-018-1272-4.
Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24. https://doi.org/10.1080/10635150118398.
Article
CAS
PubMed
Google Scholar
Souza V, Moreno-Letelier A, Travisano M, Alcaraz LD, Olmedo G, Eguiarte LE. The lost world of Cuatro Ciénegas basin, a relictual bacterial niche in a desert oasis. eLife. 2018;7. https://doi.org/10.7554/elife.38278.
Escalante AE, Eguiarte LE, Espinosa-Asuar L, Forney LJ, Noguez AM, Saldivar VS. Diversity of aquatic prokaryotic communities in the Cuatro Cienegas basin. FEMS Microbiol Ecol. 2008;65:50–60. https://doi.org/10.1111/j.1574-6941.2008.00496.x.
Article
CAS
PubMed
Google Scholar
Rebollar EA, Avitia M, Eguiarte LE, González-González A, Mora L, Bonilla-Rosso G, et al. Water-sediment niche differentiation in ancient marine lineages of Exiguobacterium endemic to the Cuatro Cienegas basin. Environ Microbiol. 2012;14:2323–33. https://doi.org/10.1111/j.1462-2920.2012.02784.x.
Avitia M, Escalante AE, Rebollar EA, Moreno-Letelier A, Eguiarte LE, Souza V. Population expansions shared among coexisting bacterial lineages are revealed by genetic evidence. PeerJ. 2014;2:e696. https://doi.org/10.7717/peerj.696.
Article
PubMed
PubMed Central
Google Scholar
Souza V, Eguiarte LE, Siefert J, Elser JJ. Microbial endemism: does phosphorus limitation enhance speciation? Nat Rev Microbiol. 2008;6:559–64. https://doi.org/10.1038/nrmicro1917.
Article
PubMed
Google Scholar
Souza V, Eguiarte LE, Travisano M, Elser JJ, Rooks C, Siefert JL. Travel, sex, and food: Whats speciation got to do with it? Astrobiology. 2012;12:634–40. https://doi.org/10.1089/ast.2011.0768.
Article
PubMed
PubMed Central
Google Scholar
Vos M, Didelot X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 2008;3:199–208. https://doi.org/10.1038/ismej.2008.93.
Article
CAS
PubMed
Google Scholar
Cui Y, Yang X, Didelot X, Guo C, Li D, Yan Y, et al. Epidemic clones, oceanic gene pools, and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol Biol Evol. 2015;32:1396–410. https://doi.org/10.1093/molbev/msv009.
Peimbert M, Alcaraz LD, Bonilla-Rosso G, Olmedo-Alvarez G, Garc-Oliva F, Segovia L, et al. Comparative metagenomics of two microbial mats at Cuatro Ciénegas basin II: ancient lessons on how to cope with an environment under severe nutrient stress. Astrobiology. 2012;12:648–58. https://doi.org/10.1089/ast.2011.0694.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redfield AC. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ, editor. James Johnstone Memorial Volume: Liverpool Univ. Press, Liverpool, Merseyside, England; 1934. p. 176–92. http://cmore.soest.hawaii.edu/summercourse/2012/documents/bronk_05-30-12/Redfield_1934.pdf.
Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science. 2008;320:1081–5. https://doi.org/10.1126/science.1157890.
Article
CAS
PubMed
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2. https://doi.org/10.1093/bioinformatics/btv351.
Article
CAS
PubMed
Google Scholar
Thakur S, Guttman DS. A de-novo genome analysis pipeline (DeNoGAP) for large-scale comparative prokaryotic genomics studies. BMC Bioinformatics. 2016;17. https://doi.org/10.1186/s12859-016-1142-2.
Lux TM, Lee R, Love J. Complete genome sequence of a free-living Vibrio furnissii sp. nov. strain (NCTC 11218). J Bacteriol. 2011;193:1487–8. https://doi.org/10.1128/jb.01512-10.
Naka H, Dias GM, Thompson CC, Dubay C, Thompson FL, Crosa JH. Complete genome sequence of the marine fish pathogen Vibrio anguillarum harboring the pJM1 virulence plasmid and genomic comparison with other virulent strains of V. anguillarum and V. ordalii. Infect Immun. 2011;79:2889–900. https://doi.org/10.1128/iai.05138-11.
Xu F, Ilyas S, Hall JA, Jones SH, Cooper VS, Whistler CA. Genetic characterization of clinical and environmental Vibrio parahaemolyticus from the Northeast USA reveals emerging resident and non-indigenous pathogen lineages. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00272.
Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008;11:472–7. https://doi.org/10.1016/j.mib.2008.09.006.
Article
CAS
PubMed
Google Scholar
Excoffier L, Foll M. Fastsimcoal: a continuous-time coalescent simulator of genomic diversity under arbitrarily complex evolutionary scenarios. Bioinformatics. 2011;27:1332–4. https://doi.org/10.1093/bioinformatics/btr124.
Article
CAS
PubMed
Google Scholar
Excoffier L, Dupanloup I, Huerta-Sánchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9:e1003905. https://doi.org/10.1371/journal.pgen.1003905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sung W, Ackerman MS, Miller SF, Doak TG, Lynch M. Drift-barrier hypothesis and mutation-rate evolution. Proc Natl Acad Sci. 2012;109(45):18488–92. https://doi.org/10.1073/pnas.1216223109.
Article
PubMed
PubMed Central
Google Scholar
Jensen JD, Bachtrog D. Characterizing the influence of effective population size on the rate of adaptation: Gillespie’s Darwin domain. Genome Biology Evol. 2011;3:687–701. https://doi.org/10.1093/gbe/evr063.
Article
Google Scholar
Sivasundar A, Hey J. Population genetics of Caenorhabditis elegans: the paradox of low polymorphism in a widespread species. Genetics. 2003;163:147–57.
Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11:e1004041. https://doi.org/10.1371/journal.pcbi.1004041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–7. https://doi.org/10.1093/bioinformatics/btl140.
Article
CAS
PubMed
Google Scholar
Taboada B, Isa P, Gutiérrez-Escolano AL, del Ángel RM, Ludert JE, Vázquez N, et al. The geographic structure of viruses in the Cuatro Ciénegas basin, a unique oasis in northern Mexico, reveals a highly diverse population on a small geographic scale. Appl Environ Microbiol. 2018;84. https://doi.org/10.1128/aem.00465-18.
Souza V, Espinosa-Asuar L, Escalante AE, Eguiarte LE, Farmer J, Forney L, et al. An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc Natl Acad Sci. 2006;103:6565–70. https://doi.org/10.1073/pnas.0601434103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Montiel-González C, Bautista F, Delgado C, García-Oliva F. The Climate of Cuatro Ciénegas Basin: Drivers and Temporal Patterns. In: Souza V, Olmedo-Álvarez G, Eguiarte LE, editors. Cuatro Ciénegas Ecology, Natural History and Microbiology. New York: Springer, Cham; 2018. p. 35–42.
Chapter
Google Scholar
Bonilla-Rosso G, Peimbert M, Alcaraz LD, Hernández I, Eguiarte LE, Olmedo-Alvarez G, et al. Comparative metagenomics of two microbial mats at Cuatro Ciénegas basin II: community structure and composition in oligotrophic environments. Astrobiology. 2012;12:659–73. https://doi.org/10.1089/ast.2011.0724.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee ZM-P, Poret-Peterson AT, Siefert JL, Kaul D, Moustafa A, Allen AE, et al. Nutrient stoichiometry shapes microbial community structure in an evaporitic shallow pond. Front Microbiol. 2017;8. https://doi.org/10.3389/fmicb.2017.00949.
Anda VD, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, et al. Understanding the mechanisms behind the response to environmental perturbation in microbial mats: a metagenomic-network based approach. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.02606.
Ponce-Soto GY, Aguirre-von-Wobeser E, Eguiarte LE, Elser JJ, Lee ZM-P, Souza V. Enrichment experiment changes microbial interactions in an ultra-oligotrophic environment. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00246.
Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E, Lescat M, et al. Evolution of a dominant natural isolate of Escherichia coli in the human gut over the course of a year suggests a neutral evolution with reduced effective population size. Appl Environ Microbiol. 2018;84. https://doi.org/10.1128/aem.02377-17.
Farfan M, Minana-Galbis D, Fuste MC, Loren JG. Allelic diversity and population structure in Vibrio cholerae o139 bengal based on nucleotide sequence analysis. J Bacteriol. 2002;184:1304–13. https://doi.org/10.1128/jb.184.5.1304-1313.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gonzalez-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus L-A, DePaola A. Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing. J Bacteriol. 2008;190:2831–40. https://doi.org/10.1128/jb.01808-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korneliussen TS, Moltke I, Albrechtsen A, Nielsen R. Calculation of Tajima’s D and other neutrality test statistics from low depth next-generation sequencing data. BMC Bioinformatics. 2013;14. https://doi.org/10.1186/1471-2105-14-289.
Petit N, Barbadilla A. Selection efficiency and effective population size in Drosophila species. J Evol Biol. 2009;22:515–26. https://doi.org/10.1111/j.1420-9101.2008.01672.x.
Article
CAS
PubMed
Google Scholar
Gossmann TI, Keightley PD, Eyre-Walker A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol Evol. 2012;4:658–67. https://doi.org/10.1093/gbe/evs027.
Article
PubMed
PubMed Central
Google Scholar
Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabó G, et al. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51. https://doi.org/10.1126/science.1218198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vozza NF, Abdian PL, Russo DM, Mongiardini E, Lodeiro A, Molin S, et al. A rhizobium leguminosarum CHDL- (cadherin-like-) lectin participates in assembly and remodeling of the biofilm matrix. Front Microbiol. 2016;7. https://doi.org/10.3389/fmicb.2016.01608.
Kurz M, Brünig AN, Galinski EA. NhaD type sodium/proton-antiporter of Halomonas elongata: a salt stress response mechanism in marine habitats? Saline Systems. 2006;2:10. https://doi.org/10.1186/1746-1448-2-10.
Vimont S, Berche P. NhaA, an Na(+)/H(+) antiporter involved in environmental survival of Vibrio cholerae. J Bacteriol. 2000;182:2937–44. https://doi.org/10.1128/jb.182.10.2937-2944.2000.
Wolaver BD, Crossey LJ, Karlstrom KE, Banner JL, Cardenas MB, Ojeda CG, et al. Identifying origins of and pathways for spring waters in a semiarid basin using He, Sr, and C isotopes: Cuatrociénegas basin, Mexico. Geosphere. 2012;9:113–25. https://doi.org/10.1130/ges00849.1.
Vázquez-Rosas-Landa M, Ponce-Soto GY, Eguiarte LE, Souza V. Comparative genomics of free-living gammaproteobacteria: pathogenesis-related genes or interaction-related genes? Pathogens Disease. 2017;75. https://doi.org/10.1093/femspd/ftx059.
Huffman EW. Performance of a new automatic carbon dioxide coulometer. Microchem J. 1977;22:567–73. https://doi.org/10.1016/0026-265x(77)90128-x.
Article
CAS
Google Scholar
Bremner JM. Total nitrogen. In: Sparks DL, editor. Methods of Soil Analysis. Part 2 Chemical Methods. Madison: Soil Science Society of America; 1996. p. 1085–6.
Google Scholar
Murphy J, Riley J. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:31–6. https://doi.org/10.1016/s0003-2670(00)88444-5.
Article
CAS
Google Scholar
Aljanabi S. Universal and rapid salt-extraction of high quality genomic DNA for PCR- based techniques. Nucleic Acids Res. 1997;25:4692–3. https://doi.org/10.1093/nar/25.22.4692.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematic. New York: Wiley; 1991. p. 115–75.
Google Scholar
Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8. https://doi.org/10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41. https://doi.org/10.1128/aem.01541-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7. https://doi.org/10.1128/aem.00062-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acid Res. 2009;37 Database:D141–5. https://doi.org/10.1093/nar/gkn879.
Article
CAS
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. https://doi.org/10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772. https://doi.org/10.1038/nmeth.2109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2010;27:578–9. https://doi.org/10.1093/bioinformatics/btq683.
Article
CAS
PubMed
Google Scholar
Nadalin F, Vezzi F, Policriti A. GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics. 2012;13. https://doi.org/10.1186/1471-2105-13-s14-s8.
Otto TD, Sanders M, Berriman M, Newbold C. Iterative correction of reference nucleotides (iCORN) using second generation sequencing technology. Bioinformatics. 2010;26:1704–7. https://doi.org/10.1093/bioinformatics/btq269.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11. https://doi.org/10.1186/1471-2105-11-119.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9. https://doi.org/10.1093/bioinformatics/btu153.
Article
CAS
PubMed
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snipen L, Liland KH. Micropan: an R-package for microbial pan-genomics. BMC Bioinformatics. 2015;16. https://doi.org/10.1186/s12859-015-0517-0.
Core Team R. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017. https://www.R-project.org/.
Google Scholar
Lassmann T, Frings O, Sonnhammer ELL. Kalign2: high-performance multiple alignment of protein and nucleotide sequences allowing external features. Nucleic Acids Res. 2008;37:858–65. https://doi.org/10.1093/nar/gkn1006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Price MN, Dehal PS, Arkin AP. FastTree 2 approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490. https://doi.org/10.1371/journal.pone.0009490.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sawyer S. Statistical tests for detecting gene conversion. Mol Biol Evol. 1989;6:526–38. https://doi.org/10.1093/oxfordjournals.molbev.a040567.
Article
CAS
PubMed
Google Scholar
Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SD. GARD: a genetic algorithm for recombination detection. Bioinformatics. 2006;22:3096–8. https://doi.org/10.1093/bioinformatics/btl474.
Article
CAS
Google Scholar
Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using gubbins. Nucleic Acids Res. 2014;43:e15. https://doi.org/10.1093/nar/gku1196.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darling AE, Mau B, Perna NT. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5:e11147. https://doi.org/10.1371/journal.pone.0011147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;89(3):583–90.
CAS
PubMed
PubMed Central
Google Scholar
Jombart T, Ahmed I. Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics. 2011;27:3070–1. https://doi.org/10.1093/bioinformatics/btr521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Pond SLK, et al. FUBAR: a fast, unconstrained BAyesian AppRoximation for inferring selection. Mol Biol Evol. 2013;30:1196–205. https://doi.org/10.1093/molbev/mst030.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee H, Popodi E, Tang H, Foster PL. Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing. Proc Natl Acad Sci. 2012;109:E2774–83. https://doi.org/10.1073/pnas.1210309109.
Paradis E, Schliep K. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–8. https://doi.org/10.1093/bioinformatics/bty633.
Article
CAS
Google Scholar
Paradis E. Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics. 2010;26:419–20. https://doi.org/10.1093/bioinformatics/btp696.
Article
CAS
PubMed
Google Scholar
Eckshtain-Levi N, Weisberg AJ, Vinatzer BA. The population genetic test Tajima’s D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. Mol Plant Pathol. 2018;19:2187–92. https://doi.org/10.1111/mpp.12688.
Shen H-M, Chen S-B, Cui Y-B, Xu B, Kassegne K, Abe EM, et al. Whole-genome sequencing and analysis of Plasmodium falciparum isolates from China-Myanmar border area. Infect Dis Poverty. 2018;7. https://doi.org/10.1186/s40249-018-0493-5.
Csillery K, François O, Blum MGB. Abc: an R package for approximate bayesian computation (ABC). Methods Ecol Evol. 2012;3:475–9. https://doi.org/10.1111/j.2041-210x.2011.00179.x.
Article
Google Scholar
Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T, Keane JA, et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom. 2016;2. https://doi.org/10.1099/mgen.0.000056.
Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an r package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281. https://doi.org/10.7717/peerj.281.
Article
PubMed
PubMed Central
Google Scholar
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75. https://doi.org/10.1086/519795.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li N, Stephens M. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics. 2003;165:2213–33.
CAS
PubMed
PubMed Central
Google Scholar
Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 2010;11:499–511. https://doi.org/10.1038/nrg2796.
Article
CAS
PubMed
Google Scholar