Shi K, Niu F, Zhang Q, Ning C, Yue S, Hu C, Xu Z, Wang S, Li R, Hou Q, et al. Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with serum biochemical traits in Chinese Holstein cattle. Front Genet. 2020;11:163.
PubMed
PubMed Central
Google Scholar
White HM. The role of TCA cycle anaplerosis in ketosis and fatty liver in periparturient dairy cows. Animals (Basel). 2015;5(3):793–802.
Google Scholar
Bobe G, Young JW, Beitz DC. Invited review: pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J Dairy Sci. 2004;87(10):3105–24.
CAS
PubMed
Google Scholar
Tharwat M, Endoh D, Oikawa S. Hepatocyte apoptosis in dairy cows with fatty infiltration of the liver. Res Vet Sci. 2012;93(3):1281–6.
CAS
PubMed
Google Scholar
Yue SJ, Zhao YQ, Gu XR, Yin B, Jiang YL, Wang ZH, Shi KR. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Anim Genet. 2017;48(6):677–81.
CAS
PubMed
Google Scholar
Shen Y, Wei W, Zhou DX. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci. 2015;20(10):614–21.
CAS
PubMed
Google Scholar
Lin H, Su X, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem Biol. 2012;7(6):947–60.
CAS
PubMed
PubMed Central
Google Scholar
Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol. 2019;20(3):156–74.
CAS
PubMed
Google Scholar
Nambi S, Gupta K, Bhattacharyya M, Ramakrishnan P, Ravikumar V, Siddiqui N, Thomas AT, Visweswariah SS. Cyclic AMP-dependent protein lysine acylation in mycobacteria regulates fatty acid and propionate metabolism. J Biol Chem. 2013;288(20):14114–24.
CAS
PubMed
PubMed Central
Google Scholar
Hart GW, Ball LE. Post-translational modifications: a major focus for the future of proteomics. Mol Cell Proteomics. 2013;12(12):3443.
CAS
PubMed
PubMed Central
Google Scholar
Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, et al. Regulation of cellular metabolism by protein lysine acetylation. Science. 2010;327(5968):1000–4.
CAS
PubMed
PubMed Central
Google Scholar
Lee JV, Carrer A, Shah S, Snyder NW, Wei S, Venneti S, Worth AJ, Yuan ZF, Lim HW, Liu S, et al. Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 2014;20(2):306–19.
CAS
PubMed
PubMed Central
Google Scholar
Lin R, Tao R, Gao X, Li T, Zhou X, Guan KL, Xiong Y, Lei QY. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol Cell. 2013;51(4):506–18.
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Yao W, Xia J, Wang T, Huang F. Glucagon-induced acetylation of energy-sensing factors in control of hepatic metabolism. Int J Mol Sci. 2019;20(8):1885.
CAS
PubMed Central
Google Scholar
Shi K, Li R, Xu Z, Zhang Q. Identification of crucial genetic factors, such as PPARγ, that regulate the pathogenesis of fatty liver disease in dairy cows is imperative for the sustainable development of dairy industry. Animals (Basel). 2020;10(4):639.
Google Scholar
Koo SH. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis. Clin Mol Hepatol. 2013;19(3):210–5.
PubMed
PubMed Central
Google Scholar
Fu C, Liu L, Li F. Acetate alters the process of lipid metabolism in rabbits. Animals (Basel). 2018;12(9):1895–902.
CAS
Google Scholar
Liu L, Fu C, Li FC. Dietary niacin supplementation suppressed hepatic lipid accumulation in rabbits. Asian Austral J Anim. 2016;29(12):1748–55.
CAS
Google Scholar
Liu L, Fu C, Li F. Acetate Affects the process of lipid metabolism in rabbit liver, skeletal muscle and adipose tissue. Animals (Basel). 2019;9(10):799.
Google Scholar
Jiang F, Lin X, Yan Z, Hu Z, Wang Y, Wang Z. Effects of forage source and particle size on feed sorting, milk production and nutrient digestibility in lactating dairy cows. J Anim Physiol Anim Nutr (Berl). 2018;102(6):1472–81.
CAS
Google Scholar
Hu ZY, Yin ZY, Lin XY, Yan ZG, Wang ZH. Effects of feeding fatty acid calcium and the interaction of forage quality on production performance and biochemical indexes in early lactation cow. J Anim Physiol Anim Nutr (Berl). 2015;99(5):899–904.
CAS
Google Scholar
Jorritsma R, Jorritsma H, Schukken YH, Wentink GH. Relationships between fatty liver and fertility and some periparturient diseases in commercial Dutch dairy herds. Theriogenology. 2000;54(7):1065–74.
CAS
PubMed
Google Scholar
Katoh N. Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows. J Vet Med Sci. 2002;64(4):293–307.
CAS
PubMed
Google Scholar
Kobayashi Y, Boyd CK, McCormack BL, Lucy MC. Reduced insulin-like growth factor-I after acute feed restriction in lactating dairy cows is independent of changes in growth hormone receptor 1A mRNA. J Dairy Sci. 2002;85(4):748–54.
CAS
PubMed
Google Scholar
Du H, Wang C, Wang X, Ma M, Li F. The effects of dietary α-linolenic acid on growth performance, meat quality, fatty acid composition, and liver relative enzyme mRNA expression of growing meat rabbits. J Anim Feed Sci. 2013;22:122–9.
Google Scholar
Radcliff RP, McCormack BL, Keisler DH, Crooker BA, Lucy MC. Partial feed restriction decreases growth hormone receptor 1A mRNA expression in postpartum dairy cows. J Dairy Sci. 2006;89(2):611–9.
CAS
PubMed
Google Scholar
Farid AS, Honkawa K, Fath EM, Nonaka N, Horii Y. Serum paraoxonase-1 as biomarker for improved diagnosis of fatty liver in dairy cows. BMC Vet Res. 2013;9:73.
PubMed
PubMed Central
Google Scholar
Pullen DL, Liesman JS, Emery RS. A species comparison of liver slice synthesis and secretion of triacylglycerol from nonesterified fatty acids in media. J Anim Sci. 1990;68(5):1395–9.
CAS
PubMed
Google Scholar
Cui J, Zeng Y, Wang H, Chen W, Du J, Chen QM, et al. The effects of DGAT1 and DGAT2 mRNA expression on fat deposition in fatty and lean breeds of pig. Livest Sci. 2011;140:292–6.
Google Scholar
Wang H, Wang J, Yang DD, Liu ZL, Zeng YQ, Chen W. Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs. Asian Austral J Anim. 2020;33(3):390–7.
Google Scholar
Nasr P, Ignatova S, Kechagias S, Ekstedt M. Natural history of nonalcoholic fatty liver disease: a prospective follow-up study with serial biopsies. Hepatol Commun. 2018;2(2):199–210.
CAS
PubMed
Google Scholar
Demir M, Lang S, Steffen HM. Nonalcoholic fatty liver disease - current status and future directions. J Dig Dis. 2015;16(10):541–57.
CAS
PubMed
Google Scholar
Bellentani S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017;37(Suppl 1):81–4.
PubMed
Google Scholar
Du X, Liu G, Loor JJ, Fang Z, Bucktrout R, Yang Y, et al. Impaired hepatic autophagic activity in dairy cows with severe fatty liver is associated with inflammation and reduced liver function. J Dairy Sci. 2018;101(12):11175–85.
CAS
PubMed
Google Scholar
Bradford BJ, Yuan K, Farney JK, Mamedova LK, Carpenter AJ. Invited review: inflammation during the transition to lactation: new adventures with an old flame. J Dairy Sci. 2015;98(10):6631–50.
CAS
PubMed
Google Scholar
Du X, Chen L, Huang D, Peng Z, Zhao C, Zhang Y, et al. Elevated apoptosis in the liver of dairy cows with ketosis. Cell Physiol Biochem. 2017;43(2):568–78.
CAS
PubMed
Google Scholar
Ekstedt M, Nasr P, Kechagias S. Natural history of NAFLD/NASH. Curr Hepatol Rep. 2017;16(4):391–7.
PubMed
PubMed Central
Google Scholar
Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol. 2018;15(6):349–64.
CAS
PubMed
Google Scholar
Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell. 2006;23(4):607–18.
CAS
PubMed
Google Scholar
Baeza J, Smallegan MJ, Denu JM. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci. 2016;41(3):231–44.
CAS
PubMed
PubMed Central
Google Scholar
Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, Watson PA, Birdsey N, Bao J, Gius D, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011;433(3):505–14.
CAS
PubMed
PubMed Central
Google Scholar
Zhai R, Dong X, Feng L, Li S, Hu Z. The effect of heat stress on autophagy and apotosis of rumen, abomasum, duodenum, liver and kidney cells in calves. Animals (Basel). 2019;9:85.
Google Scholar
Dong X, Zhai R, Liu Z, Lin X, Wang Z, Hu Z. The effect of intravenous infusions of glutamine on duodenal cell autophagy and apoptosis in early-weaned calves. Animals (Basel). 2019;9(7):404.
Google Scholar
Anderson KA, Hirschey MD. Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 2012;52:23–35.
CAS
PubMed
Google Scholar
Garcia-Roche M, Casal A, Mattiauda DA, Ceriani M, Jasinsky A, Mastrogiovanni M, Trostchansky A, Carriquiry M, Cassina A, Quijano C. Impaired hepatic mitochondrial function during early lactation in dairy cows: association with protein lysine acetylation. PLoS One. 2019;14(3):e213780.
Google Scholar
Li Y, Zou S, Ding H, Hao N, Huang Y, Tang J, Cheng J, Feng S, Li J, Wang X, et al. Low expression of sirtuin 1 in the dairy cows with mild fatty liver alters hepatic lipid metabolism. Animals (Basel). 2020;10(4):560.
Google Scholar
Zhang Y, Zhou F, Bai M, Liu Y, Zhang L, Zhu Q, Bi Y, Ning G, Zhou L, Wang X. The pivotal role of protein acetylation in linking glucose and fatty acid metabolism to beta-cell function. Cell Death Dis. 2019;10(2):66.
CAS
PubMed
PubMed Central
Google Scholar
He X, Gao J, Hou H, Qi Z, Chen H, Zhang XX. Inhibition of mitochondrial fatty acid oxidation contributes to development of nonalcoholic fatty liver disease induced by environmental cadmium exposure. Environ Sci Technol. 2019;53(23):13992–4000.
CAS
PubMed
Google Scholar
Guo L, Zhou SR, Wei XB, Liu Y, Chang XX, Liu Y, Ge X, Dou X, Huang HY, Qian SW, et al. Acetylation of mitochondrial trifunctional protein alpha-subunit enhances its stability to promote fatty acid oxidation and is decreased in nonalcoholic fatty liver disease. Mol Cell Biol. 2016;36(20):2553–67.
CAS
PubMed
PubMed Central
Google Scholar
Rodriguez-Suarez E, Duce AM, Caballeria J, Martinez AF, Fernandez E, Gomara C, Alkorta N, Ariz U, Martinez-Chantar ML, Lu SC, et al. Non-alcoholic fatty liver disease proteomics. Proteomics Clin Appl. 2010;4(4):362–71.
CAS
PubMed
PubMed Central
Google Scholar
Thapa D, Wu K, Stoner MW, Xie B, Zhang M, Manning JR, Lu Z, Li JH, Chen Y, Gucek M, et al. The protein acetylase GCN5L1 modulates hepatic fatty acid oxidation activity via acetylation of the mitochondrial beta-oxidation enzyme HADHA. J Biol Chem. 2018;293(46):17676–84.
CAS
PubMed
PubMed Central
Google Scholar
de la Rosa RM, Sugahara G, Hooiveld G, Ishida Y, Tateno C, Kersten S. The whole transcriptome effects of the PPARalpha agonist fenofibrate on livers of hepatocyte humanized mice. BMC Genomics. 2018;19(1):443.
Google Scholar
Zhao Z, Lu J, Han L, Wang X, Man Q, Liu S. Prognostic significance of two lipid metabolism enzymes, HADHA and ACAT2, in clear cell renal cell carcinoma. Tumour Biol. 2016;37(6):8121–30.
CAS
PubMed
Google Scholar
Mamtani M, Kulkarni H. Association of HADHA expression with the risk of breast cancer: targeted subset analysis and meta-analysis of microarray data. BMC Res Notes. 2012;5:25.
CAS
PubMed
PubMed Central
Google Scholar
Kim SY, Lee PY, Shin HJ, Kim DH, Kang S, Moon HB, Kang SW, Kim JM, Park SG, Park BC, et al. Proteomic analysis of liver tissue from HBx-transgenic mice at early stages of hepatocarcinogenesis. Proteomics. 2009;9(22):5056–66.
CAS
PubMed
Google Scholar
Abdelkreem E, Akella R, Dave U, Sane S, Otsuka H, Sasai H, Aoyama Y, Nakama M, Ohnishi H, Mahmoud S, et al. Clinical and mutational characterizations of ten indian patients with beta-ketothiolase deficiency. JIMD Rep. 2017;35:59–65.
PubMed
Google Scholar
Goudarzi A. The recent insights into the function of ACAT1: a possible anti-cancer therapeutic target. Life Sci. 2019;232:116592.
CAS
PubMed
Google Scholar
Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 2018;655:1–11.
CAS
PubMed
Google Scholar
Yang W, Bai Y, Xiong Y, Zhang J, Chen S, Zheng X, Meng X, Li L, Wang J, Xu C, et al. Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism. Nature. 2016;531(7596):651–5.
CAS
PubMed
PubMed Central
Google Scholar
Yan Z, Wang Z, Zhang Q, Yue S, Yin B, Jiang Y, Shi K. Identification of whole-genome significant single nucleotide polymorphisms in candidate genes associated with body conformation traits in Chinese Holstein cattle. Anim Genet. 2020;51(1):141–6.
PubMed
Google Scholar
Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJ. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res. 2012;53(7):1296–303.
CAS
PubMed
PubMed Central
Google Scholar
Borner S, Albrecht E, Schaff C, Hacke S, Kautzsch U, Derno M, Hammon HM, Rontgen M, Sauerwein H, Kuhla B. Reduced AgRP activation in the hypothalamus of cows with high extent of fat mobilization after parturition. Gen Comp Endocrinol. 2013;193:167–77.
PubMed
Google Scholar
Grum DE, Drackley JK, Clark JH. Fatty acid metabolism in liver of dairy cows fed supplemental fat and nicotinic acid during an entire lactation. J Dairy Sci. 2002;85(11):3026–34.
CAS
PubMed
Google Scholar
Carriquiry M, Weber WJ, Fahrenkrug SC, Crooker BA. Hepatic gene expression in multiparous Holstein cows treated with bovine somatotropin and fed n-3 fatty acids in early lactation. J Dairy Sci. 2009;92(10):4889–900.
CAS
PubMed
Google Scholar