de Lau LML, Giesbergen PCLM, de Rijk MC, Hofman A, Koudstaal PJ, Breteler MMB. Incidence of parkinsonism and Parkinson disease in a general population: the Rotterdam study. Neurology. 2004;63(7):1240–4.
Article
PubMed
Google Scholar
Braak H, Ghebremedhin E, Rüb U, Bratzke H, Tredici K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004;318(1):121–34.
Article
PubMed
Google Scholar
Braak H, Tredici KD, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
Article
PubMed
Google Scholar
Hawkes CH, Del Tredici K, Braak H. A timeline for Parkinson's disease. Parkinsonism Relat Disord. 2010;16(2):79–84.
Article
PubMed
Google Scholar
Harel BT, Cannizzaro MS, Cohen H, Reilly N, Snyder PJ. Acoustic characteristics of Parkinsonian speech: a potential biomarker of early disease progression and treatment. J Neurolinguist. 2004;17(6):439–53.
Article
Google Scholar
Hartelius L, Svensson P. Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica. 1994;46(1):9–17.
Article
PubMed
CAS
Google Scholar
Ho AK, Iansek R, Marigliani C, Bradshaw JL, Gates S. Speech impairment in a large sample of patients with Parkinson's disease. Behav Neurol. 1999;11(3):131–7.
Article
PubMed
CAS
Google Scholar
Holmes RJ, Oates JM, Phyland DJ, Hughes AJ. Voice characteristics in the progression of Parkinson's disease. International journal of language & communication disorders / Royal College of Speech & Language Therapists. 2000;35(3):407–18.
Article
CAS
Google Scholar
Plowman-Prine EK, Sapienza CM, Okun MS, Pollock SL, Jacobson C, Wu SS, et al. The relationship between quality of life and swallowing in Parkinson's disease. Mov Disord. 2009;24(9):1352–8.
Article
PubMed
PubMed Central
Google Scholar
Marras C, McDermott MP, Rochon PA, Tanner CM, Naglie G, Lang AE. Predictors of deterioration in health-related quality of life in Parkinson's disease: results from the DATATOP trial. Mov Disord. 2008;23(5):653–9.
Article
PubMed
Google Scholar
Ciucci MR, Grant LM, Rajamanickam ESP, Hilby BL, Blue KV, Jones CA, et al. Early identification and treatment of communication and swallowing deficits in Parkinson disease. Semin Speech Lang. 2013;34(03):185–202.
Article
PubMed
PubMed Central
Google Scholar
Plowman-Prine EK, Okun MS, Sapienza CM, Shrivastav R, Fernandez HH, Foote KD, et al. Perceptual characteristics of Parkinsonian speech: a comparison of the pharmacological effects of levodopa across speech and non-speech motor systems. NeuroRehabilitation. 2009;24(2):131–44.
Article
PubMed
CAS
Google Scholar
Sanabria J, Ruiz PG, Gutierrez R, Marquez F, Escobar P, Gentil M, et al. The effect of levodopa on vocal function in Parkinson's disease. Clin Neuropharmacol. 2001;24(2):99–102.
Article
PubMed
CAS
Google Scholar
Larson CR. The midbrain periaqueductal gray: a brainstem structure involved in vocalization. J Speech Lang Hear Res. 1985;28(2):241–9.
Article
CAS
Google Scholar
Larson CR, Kistler MK. The relationship of periaqueductal gray neurons to vocalization and laryngeal EMG in the behaving monkey. Exp Brain Res. 1986;63(3):596–606.
Article
PubMed
CAS
Google Scholar
Goodson JL. The vertebrate social behavior network: evolutionary themes and variations. Horm Behav. 2005;48(1):11–22.
Article
PubMed
PubMed Central
Google Scholar
Zhang SP, Davis PJ, Bandler R, Carrive P. Brain stem integration of vocalization: role of the midbrain periaqueductal gray. J Neurophysiol. 1994;72(3):1337–56.
Article
PubMed
CAS
Google Scholar
Davis PJ, Zhang SP, Winkworth A, Bandler R. Neural control of vocalization: respiratory and emotional influences. J Voice. 1996;10(1):23–38.
Article
PubMed
CAS
Google Scholar
Larson CR. Activity of PAG neurons during conditioned vocalization in the macaque monkey. In: Depaulis A, Bandler R, editors. The midbrain periaqueductal gray matter: functional, anatomical, and neurochemical organization. Boston, MA: Springer US; 1991. p. 23–40.
Chapter
Google Scholar
Shiba K, Satoh I, Kobayashi N, Hayashi F. Multifunctional laryngeal Motoneurons: an intracellular study in the cat. J Neurosci. 1999;19(7):2717–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fardin V, Oliveras J-L, Besson J-M. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. I. the production of behavioral side effects together with analgesia. Brain Res. 1984;306(1):105–23.
Article
PubMed
CAS
Google Scholar
Schulz GM, Varga M, Jeffires K, Ludlow CL, Braun AR. Functional Neuroanatomy of human vocalization: an H215O PET study. Cereb Cortex. 2005;15(12):1835–47.
Article
PubMed
CAS
Google Scholar
Rektorova I, Mikl M, Barrett J, Marecek R, Rektor I, Paus T. Functional neuroanatomy of vocalization in patients with Parkinson's disease. J Neurol Sci. 2012;313(1):7–12.
Article
PubMed
CAS
Google Scholar
Grant LM, Kelm-Nelson CK, Hilby BL, Blue KV, Rajamanickam ESP, Pultorak J, et al. Evidence for early and progressive ultrasonic vocalization and oromotor deficits in a PINK1 knockout rat model of Parkinson disease. J Neurosci Res. 2015;93(11):1713–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease. Neurobiol Dis 2014;70(0):190–203.
Marquis JM, Lettenberger SE, Kelm-Nelson CA. Early-onset Parkinsonian behaviors in female Pink1−/− rats. Behavioral Brain Research. 2020;13(377):112175.
Article
CAS
Google Scholar
Pultorak J, Kelm-Nelson CK, Holt LR, Blue KV, Ciucci MR, Johnson AM. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats. Soc Neurosci. 2015;11(4):365–79.
Article
PubMed
PubMed Central
Google Scholar
Kelm-Nelson CAaC, M.R. Levodopa improves a subset of motor function associated with nigrostriatal deficits in a Pink1 −/− rat model of Parkinson disease. In publication.
Kelm-Nelson CA, Yang KM, Ciucci MR. Exercise effects on early vocal ultrasonic communication dysfunction in a PINK1 knockout model of Parkinson's disease. J Parkinsons Dis. 2015;5(4):749–63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yajima Y, Hayashi Y, Yoshi N. The midbrain central gray substance as a highly sensitive neural structure for the production of ultrasonic vocalization in the rat. Brain Res. 1980;198(2):446–52.
Article
PubMed
CAS
Google Scholar
Kelm-Nelson CA, Stevenson SA, Ciucci MR. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 −/− rat model of Parkinson disease. Neurosci Lett. 2016;621:75–82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grant LM, Richter FR, Miller JE, White SA, Fox CM, Zhu C, et al. Vocalization deficits in mice over-expressing alpha-synuclein, a model of pre-manifest Parkinson's disease. Behav Neurosci. 2014;128(2):110–21.
Article
PubMed
PubMed Central
Google Scholar
Kelly J, Moyeed R, Carroll C, Albani D, Li X. Gene expression meta-analysis of Parkinson’s disease and its relationship with Alzheimer’s disease. Molecular Brain. 2019;12(1):16.
Article
PubMed
PubMed Central
Google Scholar
Lesnick TG, Papapetropoulos S, Mash DC, Ffrench-Mullen J, Shehadeh L, de Andrade M, et al. A genomic pathway approach to a complex disease: axon guidance and Parkinson disease. PLoS Genet. 2007;3(6):e98.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schulze M, Sommer A, Plotz S, Farrell M, Winner B, Grosch J, et al. Sporadic Parkinson's disease derived neuronal cells show disease-specific mRNA and small RNA signatures with abundant deregulation of piRNAs. Acta neuropathologica communications. 2018;6(1):58.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dumitriu A, Golji J, Labadorf AT, Gao B, Beach TG, Myers RH, et al. Integrative analyses of proteomics and RNA transcriptomics implicate mitochondrial processes, protein folding pathways and GWAS loci in Parkinson disease. BMC Med Genet. 2016;9(1):5.
Google Scholar
Chatterjee P, Roy D. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson's disease. Biochem Biophys Res Commun. 2017;484(3):557–64.
Article
PubMed
CAS
Google Scholar
Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, et al. The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. MovDisord. 2018;33(1):88–98.
CAS
Google Scholar
Clements CM, McNally RS, Conti BJ, Mak TW, Ting JPY. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci U S A. 2006;103(41):15091–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lewandowski NM, Ju S, Verbitsky M, Ross B, Geddie ML, Rockenstein E, et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc Natl Acad Sci U S A. 2010;107(39):16970–5.
Article
PubMed
PubMed Central
Google Scholar
Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, et al. Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet. 2014;46(6):588–94.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A. 2008;105(32):11364–9.
Article
PubMed
PubMed Central
Google Scholar
Foti R, Zucchelli S, Biagioli M, Roncaglia P, Vilotti S, Calligaris R, et al. Parkinson disease-associated DJ-1 is required for the expression of the glial cell line-derived neurotrophic factor receptor RET in human neuroblastoma cells. J Biol Chem. 2010;285(24):18565–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510(7503):162–6.
Article
PubMed
CAS
Google Scholar
Heeman B, Van den Haute C, Aelvoet S-A, Valsecchi F, Rodenburg RJ, Reumers V, et al. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci. 2011;124(7):1115–25.
Article
PubMed
CAS
Google Scholar
Liu W, Vives-Bauza C, Acín-Peréz R, Yamamoto A, Tan Y, Li Y, et al. PINK1 defect causes mitochondrial dysfunction, proteasomal deficit and α-Synuclein aggregation in cell culture models of Parkinson's disease. PLoS One. 2009;4(2):e4597.
Article
PubMed
PubMed Central
CAS
Google Scholar
Piccoli C, Sardanelli A, Scrima R, Ripoli M, Quarato G, D'Aprile A, et al. Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res. 2008;33(12):2565–74.
Article
PubMed
CAS
Google Scholar
Ferris CF, Morrison TR, Iriah S, Malmberg S, Kulkarni P, Hartner JC, et al. Evidence of neurobiological changes in the Presymptomatic PINK1 knockout rat. J Parkinsons Dis. 2018;8(2):281–301.
Article
PubMed
CAS
Google Scholar
Eisenstein RS. Interaction of the hemochromatosis gene product Hfe with transferrin receptor modulates cellular Iron metabolism. Nutr Rev. 1998;56(12):356–8.
Article
PubMed
CAS
Google Scholar
Costello DJ, Walsh SL, Harrington HJ, Walsh CH. Concurrent hereditary haemochromatosis and idiopathic Parkinson's disease: a case report series. J Neurol Neurosurg Psychiatry. 2004;75(4):631–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liddell JR, White AR. Nexus between mitochondrial function, iron, copper and glutathione in Parkinson's disease. Neurochem Int. 2018;117:126–38.
Article
PubMed
CAS
Google Scholar
Urrutia PJ, Mena NP, Nunez MT. The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol. 2014;5:38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mitchell RM, Lee SY, Simmons Z, Connor JR. HFE polymorphisms affect cellular glutamate regulation. Neurobiol Aging. 2011;32(6):1114–23.
Article
PubMed
CAS
Google Scholar
Jurgens U. The role of the periaqueductal grey in vocal behaviour. Behav Brain Res. 1994;62(2):107–17.
Article
PubMed
CAS
Google Scholar
Jurgens U, Lu CL. Interactions between glutamate, GABA, acetylcholine and histamine in the periaqueductal gray's control of vocalization in the squirrel monkey. Neurosci Lett. 1993;152(1–2):5–8.
Article
PubMed
CAS
Google Scholar
Jürgens U, Lu CL. The effects of Periaqueductally injected transmitter antagonists on forebrain-elicited vocalization in the squirrel monkey. Eur J Neurosci. 1993;5(6):735–41.
Article
PubMed
Google Scholar
Jurgens U, Richter K. Glutamate-induced vocalization in the squirrel monkey. Brain Res. 1986;373(1–2):349–58.
Article
PubMed
CAS
Google Scholar
Kelm-Nelson CA, Trevino MA, Ciucci MR. Quantitative analysis of Catecholamines in the Pink1 −/− rat model of early-onset Parkinson's disease. Neuroscience. 2018;379:126–41.
Article
PubMed
CAS
Google Scholar
Stevenson SA, Ciucci MR, Kelm-Nelson CA. Intervention changes acoustic peak frequency and mesolimbic neurochemistry in the Pink1−/− rat model of Parkinson disease. PLoS One. 2019;14(8):e0220734.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nickols HH, Conn PJ. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol Dis. 2014;61:55–71.
Article
PubMed
CAS
Google Scholar
Roccaro-Waldmeyer DM, Girard F, Milani D, Vannoni E, Prétôt L, Wolfer DP, et al. Eliminating the VGlut2-dependent Glutamatergic transmission of Parvalbumin-expressing neurons leads to deficits in locomotion and vocalization, decreased pain sensitivity, and increased dominance. Front Behav Neurosci. 2018;12:146.
Article
PubMed
PubMed Central
CAS
Google Scholar
Merullo DP, Asogwa CN, Sanchez-Valpuesta M, Hayase S, Pattnaik BR, Wada K, et al. Neurotensin and neurotensin receptor 1 mRNA expression in song-control regions changes during development in male zebra finches. Dev Neurobiol. 2018;78(7):671–86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prus AJ, Hillhouse TM, LaCrosse AL. Acute, but not repeated, administration of the neurotensin NTS1 receptor agonist PD149163 decreases conditioned footshock-induced ultrasonic vocalizations in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;49:78–84.
Article
CAS
Google Scholar
Baptista MAS, Dave KD, Sheth NP, De Silva SN, Carlson KM, Aziz YN, et al. A strategy for the generation, characterization and distribution of animal models by the Michael J. Fox Foundation for Parkinson’s research. Dis Model Mech. 2013;6(6):1316–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guide for the Care and Use of Laboratory Animals. Washington DC: National Academy of Sciences.; 2011.
Kelm-Nelson CA, Brauer AFL, Ciucci MR. Vocal training, levodopa, and environment effects on ultrasonic vocalizations in a rat neurotoxin model of Parkinson disease. Behav Brain Res. 2016;307:54–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aken BL, Ayling S, Barrell D, Clarke L, Curwen V, Fairley S, et al. The Ensembl gene annotation system. Database. 2016;2016.
Jiang H, Lei R, Ding S-W, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinformatics. 2014;15(1):182.
Article
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26.
Reiner A, Yekutieli D, Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics. 2003;19(3):368–75.
Article
PubMed
CAS
Google Scholar
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics. 2013;14:128.
Article
PubMed
PubMed Central
Google Scholar
Subhash S, Kanduri C. GeneSCF: a real-time based functional enrichment tool with support for multiple organisms. BMC Bioinformatics. 2016;17(1):365.
Article
PubMed
PubMed Central
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559.
Article
PubMed
PubMed Central
CAS
Google Scholar