Wardrop AB, Dadswell HE. The nature of reaction wood I. structure and properties of tension wood fibres. Aust J Biol Sci. 1948;1:3–16.
Article
Google Scholar
Wardrop AB, Scaife E. Occurrence of peroxidase in tension wood of angiosperms. Nature. 1956;178(4538):867.
Article
CAS
Google Scholar
Du S, Yamamoto F. An overview of the biology of reaction wood formation. J Integr Plant Biol. 2007;49(2):131–43.
Article
CAS
Google Scholar
Wilson BF, Gartner BL. Lean in red alder (Alnus rubra): growth stress, tension wood, and righting response. Can J For Res. 1996;26(11):1951–6.
Article
Google Scholar
Clair B, Ruelle J, Thibaut B. Relationship between growth stress, mechanical-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea Sativa mill.). Holzforschung. 2003;57(2):189–95.
Article
CAS
Google Scholar
Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J. Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci. 2005;51(3):222–33.
Article
CAS
Google Scholar
Bygdell J, Srivastava V, Obudulu O, Srivastava MK, Nilsson R, Sundberg B, Trygg J, Mellerowicz EJ, Wingsle G. Protein expression in tension wood formation monitored at high tissue resolution in Populus. J Exp Bot. 2017;68(13):3405–17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses M-C, Pilate G. Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol. 2004;164(1):107–21.
Article
CAS
PubMed
Google Scholar
Yamamoto H. Generation mechanism of growth stresses in wood cell walls: roles of lignin deposition and cellulose microfibril during cell wall maturation. Wood Sci Technol. 1998;32(3):171–82.
Article
CAS
Google Scholar
Jourez B, Riboux A, Leclercq A. Anatomical characteristics of tension wood and opposite wood in young inclined stem of poplar (Populus euramericana CV 'GHOY'). IAWA J. 2001;22(2):133–57.
Article
Google Scholar
Lee PW, Eom YG. Anatomical comparison between compression wood and opposite wood in a branch of Korean pine (Pinus koraiensis). IAWA Bulletin. 1988;9(3):275–84.
Article
Google Scholar
Lin JX, Li ZL. Comparative anatomy of normal wood and compression wood of masson pine (Pinus massoniana). J Integr Plant Biol. 1993;35(3):201–5.
Google Scholar
Clair B, Gril J, Renzo FD, Yamamoto H, Quignard F. Characterization of a gel in the Cell Wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules. 2008;9(2):494–8.
Article
PubMed
CAS
Google Scholar
Seyfferth C, Wessels BA, Gorzsas A, Love JW, Ruggeberg M, Delhomme N, Vain T, Antos K, Tuominen H, Sundberg B, et al. Ethylene signaling is required for fully functional tension wood in hybrid Aspen. Front Plant Sci. 2019;10:1101.
Article
PubMed
PubMed Central
Google Scholar
Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. PNAS. 2009;106(14):5984–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Felten J, Vahala J, Love J, Gorzsas A, Ruggeberg M, Delhomme N, Lesniewska J, Kangasjarvi J, Hvidsten TR, Mellerowicz EJ, et al. Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytol. 2018;218(3):999–1014.
Article
PubMed
CAS
Google Scholar
Du S, Uno H, Yamamoto F. Roles of auxin and gibberellin in gravity-induced tension wood formation in Aesculus turbinata seedlings. IAWA J. 2004;25(3):337–47.
Article
Google Scholar
Funada R, Miura T, Shimizu Y, Kinase T, Nakaba S, Kubo T, Sano Y. Gibberellin-induced formation of tension wood in angiosperm trees. Planta. 2008;227(6):1409–14.
Article
PubMed
CAS
Google Scholar
Nugroho WD, Yamagishi Y, Nakaba S, Fukuhara S, Begum S, Marsoem SN, Ko JH, Jin HO, Funada R. Gibberellin is required for the formation of tension wood and stem gravitropism in Acacia mangium seedlings. Ann Bot. 2012;110(4):887–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang H, Jin Y, Wang C, Li B, Jiang C, Sun Z, Zhang Z, Kong F, Zhang H. Fasciclin-like arabinogalactan proteins, PtFLAs, play important roles in GA-mediated tension wood formation in Populus. Sci Rep. 2017;7(1):6182.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang S, Li YF, Chen HX, Xu K. Control of negative Gravitropism and tension wood formation by Gibberellic acid and Indole acetic acid in Fraxinus mandshurica Rupr. Var. japonica maxim seedlings. J Integr Plant Biol. 2006;48(2):161–8.
Article
CAS
Google Scholar
Yu M, Liu K, Liu S, Chen H, Zhou L, Liu Y. Effect of exogenous IAA on tension wood formation by facilitating polar auxin transport and cellulose biosynthesis in hybrid poplar (Populus deltoids × Populus nigra) wood. Holzforschung. 2017;71(2):179–88.
Article
CAS
Google Scholar
Hellgren JM, Olofsson K, Sundberg B. Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol. 2004;135(1):212–20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S. Environmental and auxin regulation of wood formation involves members of the aux/IAA gene family in hybrid aspen. Plant J. 2002;31(6):675–85.
Article
PubMed
CAS
Google Scholar
Chen J, Chen B, Zhang D. Transcript profiling of Populus tomentosa genes in normal, tension, and opposite wood by RNA-seq. BMC Genomics. 2015;16:164.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cai M, Huang H, Ni F, Tong Z, Lin E, Zhu M. RNA-Seq analysis of differential gene expression in Betula luminifera xylem during the early stages of tension wood formation. Peer J. 2018;6:e5427.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xiao Y, Yi F, Ling J, Wang Z, Zhao K, Lu N, Qu G, Kong L, Ma W, Wang J. Transcriptomics and proteomics reveal the cellulose and pectin metabolic processes in the tension wood (non-G-layer) of Catalpa bungei. Int J Mol Sci. 2020;21:1686.
Article
PubMed Central
CAS
Google Scholar
Gerttula S, Zinkgraf M, Muday GK, Lewis DR, Ibatullin FM, Brumer H, Hart F, Mansfield SD, Filkov V, Groover A. Transcriptional and hormonal regulation of Gravitropism of Woody stems in Populus. Plant Cell. 2015;27(10):2800–13.
PubMed
PubMed Central
CAS
Google Scholar
Chen J, Quan M, Zhang D. Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta. 2015;241(1):125–43.
Article
PubMed
CAS
Google Scholar
Xiao Y, Ma WJ, Lu N, Wang Z, Wang N, Zhai WJ, Kong LS, Qu GZ, Wang QX, Wang JH. Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests. 2019;10(1):57.
Article
Google Scholar
Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S. Anatomy and lignin distribution of reaction wood in two Magnolia species. Wood Sci Technol. 2000;34(3):183–96.
Article
CAS
Google Scholar
Mizrachi E, Maloney VJ, Silberbauer J, Hefer CA, Berger DK, Mansfield SD, Myburg AA. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus. New Phytol. 2014;206(4):1351–63.
Article
PubMed
CAS
Google Scholar
Yoshida M, Ohta H, Yamamoto H, Okuyama T. Tensile growth stress and lignin distribution in the cell walls of yellow poplar, Liriodendron tulipifera Linn. Trees. 2002;16(7):457–64.
Article
CAS
Google Scholar
Herrero J, Esteban Carrasco A, Zapata JM. Arabidopsis thaliana peroxidases involved in lignin biosynthesis: in silico promoter analysis and hormonal regulation. Plant Physiol Biochem. 2014;80:192–202.
Article
PubMed
CAS
Google Scholar
Matsumoto-kitano M, Kusumoto T, Tarkowski P, Kinoshitatsujimura K, Václavíková K, Miyawaki K, Kakimoto T. Cytokinins are central regulators of cambial activity. PNAS. 2008;105(50):20027–31.
Article
PubMed
CAS
PubMed Central
Google Scholar
Moritz T, Sundberg B. Endogenous cytokinins in the vascular cambial region of Pinus sylvestris during activity and dormancy. Physiol Plant. 2006;98(4):693–8.
Article
Google Scholar
Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K, et al. Cytokinin signaling regulates cambial development in poplar. PNAS. 2008;105(50):20032–7.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benkova E, Mahonen AP, Helariutta Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol. 2011;21(11):917–26.
Article
PubMed
CAS
Google Scholar
Yamaguchi S. Gibberellin metabolism and its regulation. Annu Rev Plant Biol. 2008;59:225–51.
Article
PubMed
CAS
Google Scholar
Jiang S, Xu K, Wang YZ, Ren YP, Gu S. Role of GA3, GA4 and uniconazole-P in controlling gravitropism and tension wood formation in Fraxinus mandshurica Rupr. Var. japonica maxim. Seedlings. J Integr Plant Biol. 2008;50(1):19–28.
Article
PubMed
CAS
Google Scholar
Delay C, Imin N, Djordjevic MA. Regulation of Arabidopsis root development by small signaling peptides. Front Plant Sci. 2013;4:352.
Article
PubMed
PubMed Central
Google Scholar
Jin YL, Tang RJ, Wang HH, Jiang CM, Bao Y, Yang Y, Liang MX, Sun ZC, Kong FJ, Li B, et al. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees. Plant Biotechnol J. 2017;15(10):1309–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Du J, Gerttula S, Li ZH, Zhao ST, Liu YL, Liu Y, Lu MZ, Groover AT. Brassinosteroid regulation of wood formation in poplar. New Phytol. 2020;225(4):1516–30.
Gao J, Yu M, Zhu S, Zhou L, Liu S. Effects of exogenous 24-epibrassinolide and brassinazole on negative gravitropism and tension wood formation in hybrid poplar (Populus deltoids × Populus nigra). Planta. 2019;249(5):1449–63.
Article
PubMed
CAS
Google Scholar
Yuan H, Zhao L, Guo W, Yu Y, Tao L, Zhang L, Song X, Huang W, Cheng L, Chen J, et al. Exogenous Application of Phytohormones Promotes Growth and Regulates Expression of Wood Formation-Related Genes in Populus simonii × P. nigra. Int J Mol Sci. 2019;20(3):792.
Article
PubMed Central
CAS
Google Scholar
Iliev EA, Xu W, Polisensky DH, Oh MH, Torisky RS, Clouse SD, Braam J. Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli. Roles of cis regions and brassinosteroids. Plant Physiol. 2002;130(2):770–83.
Article
PubMed
Google Scholar
Campbell P, Braam J. Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci. 1999;4(9):361–6.
Article
PubMed
CAS
Google Scholar
Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development. 2004;131(5):1089–100.
Article
PubMed
CAS
Google Scholar
Lau S, De Smet I, Kolb M, Meinhardt H, Jurgens G. Auxin triggers a genetic switch. Nat Cell Biol. 2011;13(5):611–5.
Article
PubMed
CAS
Google Scholar
Scarpella E, Marcos D, Friml J, Berleth T. Control of leaf vascular patterning by polar auxin transport. Genes Dev. 2006;20(8):1015–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sakamoto T, Fujioka S. Auxins increase expression of the brassinosteroid receptor and brassinosteroid-responsive genes in Arabidopsis. Plant Signal Behav. 2013;8(4):e23509.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhou X-Y, Song L, Xue H-W. Brassinosteroids regulate the differential growth of Arabidopsis hypocotyls through Auxin signaling components IAA19 and ARF7. Mol Plant. 2013;6(3):887–904.
Article
PubMed
CAS
Google Scholar
Kim ED, Sung S. Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci. 2012;17(1):16–21.
Article
PubMed
CAS
Google Scholar
Roodbarkelari F, Groot EP. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis. New Phytol. 2017;213(1):95–104.
Article
PubMed
CAS
Google Scholar
Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 2002;16(13):1610–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma J, Zhou X, Ma J, Ji Z, Zhang X, Xu F. Raman microspectroscopy imaging study on topochemical correlation between lignin and hydroxycinnamic acids in Miscanthus sinensis. Microsc Microanal. 2014;20(3):956–63.
Article
PubMed
CAS
Google Scholar
Li CY, Deng GM, Yang J, Viljoen A, Jin Y, Kuang RB, Zuo CW, Lv ZC, Yang QS, Sheng O. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4. BMC Genomics. 2012;13:374.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen M, Xu R, Ji H, Greening DW, Rai A, Izumikawa K, Ishikawa H, Takahashi N, Simpson RJ. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep. 2016;6:38397.
Article
PubMed
PubMed Central
CAS
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sun K, Chen X, Jiang P, Song X, Wang H, Sun H. iSeeRNA: identification of long intergenic non-coding RNA transcripts from transcriptome sequencing data. BMC Genomics. 2013;14(Suppl 2):S7.
Article
PubMed
PubMed Central
Google Scholar
Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res. 2013;41:226–32.
Article
CAS
Google Scholar
Tafer H, Hofacker IL. RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics. 2008;24(22):2657–63.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar