Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. J Mol Biol. 1992;223(1):1–7.
CAS
PubMed
Google Scholar
Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res. 2003;31(20):5907–16..
CAS
PubMed
PubMed Central
Google Scholar
Kim B, Kim K, Yang TJ, Kim S. Completion of the mitochondrial genome sequence of onion (Allium cepa L.) containing the CMS-S male-sterile cytoplasm and identification of an independent event of the ccmFN gene split. Curr Genet. 2016;62(4):873–85.
CAS
PubMed
Google Scholar
Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, Munzinger J, et al. Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science. 2013;342(6165):1468–73.
CAS
PubMed
Google Scholar
Sloan DB, Alverson AJ, Chuckalovcak JP, Wu M, DE MC, Palmer JD, et al. Rapid evolution of enormous, multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 2012;10(1):e100124.
Google Scholar
Smith DR, Keeling PJ. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. Proc Natl Acad Sci U S A. 2015;112(33):10177–84.
CAS
PubMed
PubMed Central
Google Scholar
Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27(8):1767–80.
CAS
PubMed
PubMed Central
Google Scholar
Mower JP, Sloan DB, Alverson AJ. Plant mitochondrial genome diversity: the genomics revolution. In: Wendel J, Greilhuber J, Dolezel J, Leitch I, editors. Plant Genome Diversity. Volume 1. Vienna: Springer; 2012. p. 123–44.
Google Scholar
Adams KL, Qiu Y-L, Stoutemyer M, Palmer JD. Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci U S A. 2002;99(15):9905–12.
CAS
PubMed
PubMed Central
Google Scholar
Adams KL, Palmer JD. Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol. 2003;29(3):380–95.
CAS
PubMed
Google Scholar
Gualberto JM, Newton KJ. Plant mitochondrial genomes: Dynamics and mechanisms of mutation. Annu Rev Plant Biol. 2017;68:225–52.
CAS
PubMed
Google Scholar
Christensen AC. Mitochondrial DNA repair and genome evolution. Ann Plant Rev. 2018;50:11–32.
Google Scholar
Chevigny N, Schatz-Daas D, Lotfi F, Gualberto JM. DNA repair and the stability of the plant mitochondrial genome. Int J Mol Sci. 2020;21(1):328.
CAS
PubMed Central
Google Scholar
Liberatore KL, Dukowic-Schulze S, Miller ME, Chen C, Kianian SF. The role of mitochondria in plant development and stress tolerance. Free Radic Biol Med. 2016;100:238–56.
CAS
PubMed
Google Scholar
Alverson AJ, Rice DW, Dickinson S, Barry K, Palmer JD. Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber. Plant Cell. 2011;23(7):2499–513.
CAS
PubMed
PubMed Central
Google Scholar
Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol. 2010;27(6):1436–48.
CAS
PubMed
PubMed Central
Google Scholar
Wang D, Rousseau-Gueutin M, Timmis JN. Plastid sequences contribute to some plant mitochondrial genes. Mol Biol Evol. 2012;29(7):1707–11.
CAS
PubMed
Google Scholar
Gandini CL, Sanchez-Puerta MV. Foreign plastid sequences in plant mitochondria are frequently acquired via mitochondrion-to-mitochondrion horizontal transfer. Sci Rep. 2017;7(1):43402.
CAS
PubMed
PubMed Central
Google Scholar
Iorizzo M, Grzebelus D, Senalik D, Szklarczyk M, Spooner D, Simon P. Against the traffic: the first evidence for mitochondrial DNA transfer into the plastid genome. Mob Genet Elements. 2012;2(6):261–6.
PubMed
PubMed Central
Google Scholar
Straub SCK, Cronn RC, Edwards C, Fishbein M, Liston A. Horizontal transfer of DNA from the mitochondrial to the plastid genome and its subsequent evolution in milkweeds (Apocynaceae). Genome Biol Evol. 2013;5(10):1872–85.
CAS
PubMed
PubMed Central
Google Scholar
Ma P-F, Zhang Y-X, Guo Z-H, Li D-Z. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci Rep. 2015, 5(1):11608.
Burke SV, Wysocki WP, Zuloaga FO, Craine JM, Pires JC, Edger PP, et al. Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biol. 2016;16(1):140.
PubMed
PubMed Central
Google Scholar
Smith DR. Mutation rates in plastid genomes: they are lower than you might think. Genome Biol Evol. 2015;7(5):1227–34.
CAS
PubMed
PubMed Central
Google Scholar
Mower JP, Touzet P, Gummow JS, Delph LF, Palmer JD, Extensive variation in synonymous substitution rates in mitochondrial genes of seed plants. BMC Evol Biol. 2007;7:135.
Wolfe KH, Li WH, Sharp PM. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A. 1987;84(24):9054–8.
CAS
PubMed
PubMed Central
Google Scholar
Zhu A, Guo W, Jain K, Mower JP. Unprecedented heterogeneity in the synonymous substitution rate within a plant genome. Mol Biol Evol. 2014;31(5):1228–36.
CAS
PubMed
Google Scholar
Lynch M, Koskella B, Schaack S. Mutation pressure and the evolution of organelle genomic architecture. Science. 2006;311(5768):1727–30.
CAS
PubMed
Google Scholar
Van de Paer C, Bouchez O, Besnard G. Prospects on the evolutionary mitogenomics of plants: A case study on the olive family (Oleaceae). Mol Ecol Resour. 2018;18(3):407–23.
PubMed
Google Scholar
Preston MD, Campino S, Assefa SA, Echeverry DF, Ocholla H, Amambua-Ngwa A, et al. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun. 2014;5(1):4052.
CAS
PubMed
Google Scholar
Whittle C-A, Johnston MO. Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Mol Biol Evol. 2002;19(6):938–49.
PubMed
Google Scholar
Smith DR. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs? Brief Funct Genomics. 2016;15(1):47–54.
CAS
PubMed
Google Scholar
Chaw SM, Shih AC, Wang D, Wu YW, Liu SM, Chou TY. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol Biol Evol. 2008;25(3):603–15.
CAS
PubMed
Google Scholar
Guo W, Grewe F, Fan W, Young GJ, Knoop V, Palmer JD, et al. Ginkgo and Welwitschia mitogenomes reveal extreme contrasts in gymnosperm mitochondrial evolution. Mol Biol Evol. 2016;33(6):1448–60.
CAS
PubMed
Google Scholar
Kan S-L, Shen T-T, Gong P, Ran J-H, Wang X-Q. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome. BMC Evol Biol. 2020;20:–10.
Jackman SD, Warren RL, Gibb EA, Vandervalk BP, Mohamadi H, Chu J, et al. Organellar genomes of white spruce (Picea glauca): assembly and annotation. Genome Biol Evol. 2016;8(1):29–41.
CAS
Google Scholar
Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497(7451):579–84.
CAS
PubMed
Google Scholar
Sullivan AR, Eldfjell Y, Schiffthaler B, Delhomme N, Asp T, Hebelstrup KH, Keech O, Öberg L, Møller IM, Arvestad L, Street NR, Wang X-R. The mitogenome of Norway spruce and a reappraisal of mitochondrial recombination in plants. Genome Biol Evol. 2020;12(1):3586–98.
PubMed
Google Scholar
Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 2014;15(3):R59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stevens KA, Wegrzyn JL, Zimin A, Puiu D, Crepeau M, Cardeno C, et al. Sequence of the sugar pine megagenome. Genetics. 2016;204(4):1613–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuzmin DA, Feranchuk SI, Sharov VV, Cybin AN, Makolov SV, Putintseva YA, Oreshkova NV, Krutovsky KV. Stepwise large genome assembly approach: A case of Siberian larch (Larix sibirica Ledeb.). BMC Bioinformatics. 2019;20(Suppl. 1):37.
CAS
PubMed
PubMed Central
Google Scholar
Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a universal tool for genome assembly evaluation. Genome Biol. 2013;14(5):R47.
PubMed
PubMed Central
Google Scholar
Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, et al. Evolution of genome size and complexity in Pinus. PLoS One. 2009;4(2):e4332.
PubMed
PubMed Central
Google Scholar
Lin X, Faridi N, Casola C. An ancient trans-kingdom horizontal transfer of Penelope-like retroelements from arthropods to conifers. Genome Biol Evol. 2016;8(4):1252–66.
CAS
PubMed
PubMed Central
Google Scholar
Pritham EJ, Putliwala T, Feschotte C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene. 2007;390(1–2):3–17.
CAS
PubMed
Google Scholar
Haapa-Paananen S, Wahlberg N, Savilahti H. Phylogenetic analysis of Maverick/Polinton giant transposons across organisms. Mol Phylogenet Evol. 2014;78:271–4.
PubMed
Google Scholar
Bondar EI, Putintseva YA, Oreshkova NV, Krutovsky KV, et al. BMC Bioinformatics. 2019;20(S1):38.
CAS
PubMed
PubMed Central
Google Scholar
Unseld M, Marienfeld JR, Brandt P, Brennicke A. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet. 1997;15:57–61.
CAS
PubMed
Google Scholar
Goryunov DV, Goryunova SV, Kuznetsova OI, Logacheva MD, Milyutina IA, Fedorova AV, Ignatov MS, Troitsky AV. Complete mitochondrial genome sequence of the “copper moss” Mielichhoferia elongata reveals independent nad7 gene functionality loss. PeerJ. 2018;6:e4350.
PubMed
PubMed Central
Google Scholar
Wang D, Wu Y-W, Shih AC-C, Wu C-S, Wang Y-N, Chaw S-M. Transfer of chloroplast genomic dna to mitochondrial genome occurred at least 300 mya. Mol Biol Evol. 2007;24(9):2040–8.
CAS
PubMed
Google Scholar
Wang X-C, Chen H, Yang D, Liu C. Diversity of mitochondrial plastid DNAs (MTPTs) in seed plants. Mitochondrial DNA Part A. 2018;29(4):635–42.
Google Scholar
Warren JM, Simmons MP, Wu Z, Sloan DB. Linear plasmids and the rate of sequence evolution in plant mitochondrial genomes. Genome Biol Evol. 2016;8(2):364–74.
CAS
PubMed
PubMed Central
Google Scholar
Kozik A, Rowan BA, Lavelle D, Berke L, Schranz ME, Michelmore RW, et al. The alternative reality of plant mitochondrial DNA: One ring does not rule them all. PLOS Genet. 2019;15(8):e1008373.
CAS
PubMed
PubMed Central
Google Scholar
Sloan DB. One ring to rule them all? Genome sequencing provides new insights into the ‘master circle’ model of plant mitochondrial DNA structure. New Phytol. 2013;200(4):978–85.
CAS
PubMed
Google Scholar
Devey ME, Bell JC, Smith DN, Neale DB, Moran GF. A genetic linkage map for Pinus radiata based on RFLP, RAPD, and microsatellite markers. Theor Appl Genet. 1996;92(6):673–9.
CAS
PubMed
Google Scholar
. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Accessed 15 Dec 2019.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible read trimming tool for Illumina NGS data. Bioinformatics. 2014;30(15):2114–20.
CAS
PubMed
PubMed Central
Google Scholar
White paper on de novo assembly in CLC Assembly Cell 4.0. QIAGEN, Aarhus, Denmark. 2016. https://digitalinsights.qiagen.com/files/whitepapers/whitepaper-denovo-assembly.pdf. Accessed 16 Aug 2016.
Sahlin K, Vezzi F, Nystedt B, Lundeberg J, Arvestad L. BESST - Efficient scaffolding of large fragmented assemblies. BMC Bioinformatics. 2014;15:281.
PubMed
PubMed Central
Google Scholar
Pomerantz A, Peñafiel N, Arteaga A, Bustamante L, Pichardo F, Coloma LA, et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. Gigascience. 2018;7(4):giy033.
Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–77.
CAS
PubMed
PubMed Central
Google Scholar
Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32(1):11–6.
CAS
PubMed
PubMed Central
Google Scholar
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.
CAS
PubMed
PubMed Central
Google Scholar
Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–8.
CAS
PubMed
PubMed Central
Google Scholar
Mower JP. The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res. 2009;37:W253–9.
CAS
PubMed
PubMed Central
Google Scholar
Smit AFA, Hubley R. RepeatModeler Open-1.0. 2008–2015 Available from: http://www.repeatmasker.org. Accessed 1 Feb 2015.
Abrusan G, Grundmann N, DeMester L, Makalowski W. TEclass--a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics. 2009;25(10):1329–30.
CAS
PubMed
Google Scholar
Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015;6(1):11.
PubMed
PubMed Central
Google Scholar
Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S, et al. MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res. 2013;41(D1):D1144–51.
CAS
PubMed
Google Scholar
Wegrzyn JL, Lin BY, Zieve JJ, Dougherty WM, Martínez-García PJ, Koriabine M, et al. Insights into the loblolly pine genome: Characterization of BAC and fosmid sequences. PLoS One. 2013;8(9):e72439.
CAS
PubMed
PubMed Central
Google Scholar
Smit AFA, Hubley R, Green P. RepeatMasker Open-4.0. 2013–2015 Available from: http://www.repeatmasker.org. Accessed 1 Dec 2015.