Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell. 2013;25(7):2383–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
Unver T, Namuth-Covert DM, Budak H. Review of current methodological approaches for characterizing microRNAs in plants. Int J Plant Genomics. 2009;2009.
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.
Article
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell. 2004;14(6):787–99.
Article
CAS
PubMed
Google Scholar
Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350.
Article
CAS
PubMed
Google Scholar
Wilbert ML, Yeo GW. Genome-wide approaches in the study of microRNA biology. Wiley Interdiscip Rev Syst Biol Med. 2011;3(5):491–512.
Article
CAS
PubMed
Google Scholar
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol. 2006;57:19–53.
Article
CAS
PubMed
Google Scholar
Bartel D, Lewis B, Jones-Rhoades M, Burge C: Systems and methods for identifying miRNA targets and for altering miRNA and target expression. In: Google Patents; 2006.
An W, Gong W, He S, Pan Z, Sun J, Du X. MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum. BMC Genomics. 2015;16(1):886.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fujii H, Chiou T-J, Lin S-I, Aung K, Zhu J-K. A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol. 2005;15(22):2038–43.
Article
CAS
PubMed
Google Scholar
Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17(4):196–203.
Article
CAS
PubMed
Google Scholar
Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science. 2004;303(5666):2022–5.
Article
CAS
PubMed
Google Scholar
Ding D, Wang Y, Han M, Fu Z, Li W, Liu Z, Hu Y, Tang J. MicroRNA transcriptomic analysis of heterosis during maize seed germination. PLoS One. 2012;7(6):e39578.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang M, Zhao Q, Zhu D, Yu J. Characterization of microRNAs expression during maize seed development. BMC Genomics. 2012;13(1):360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin X, Fu Z, Lv P, Peng Q, Ding D, Li W, Tang J. Identification and characterization of microRNAs during maize grain filling. PLoS One. 2015;10(5):e0125800.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barber WT, Zhang W, Win H, Varala KK, Dorweiler JE, Hudson ME, Moose SP. Repeat associated small RNAs vary among parents and following hybridization in maize. Proc Natl Acad Sci. 2012;109(26):10444–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ding H, Gao J, Luo M, Peng H, Lin H, Yuan G, Shen Y, Zhao M, Pan G, Zhang Z. Identification and functional analysis of miRNAs in developing kernels of a viviparous mutant in maize. Crop J. 2013;1(2):115–26.
Article
Google Scholar
Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet. 2009;5(11):e1000716.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiol Plant. 2013;147(2):181–93.
Article
CAS
PubMed
Google Scholar
Zhang Z, Lin H, Shen Y, Gao J, Xiang K, Liu L, Ding H, Yuan G, Lan H, Zhou S. Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Mol Biol Rep. 2012;39(8):8137–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trevisan S, Nonis A, Begheldo M, Manoli A, Palme K, Caporale G, Ruperti B, Quaggiotti S. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant Cell Environ. 2012;35(6):1137–55.
Article
CAS
PubMed
Google Scholar
Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One. 2011;6(11):e28009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu F, Shu J, Jin W. Identification and validation of miRNAs associated with the resistance of maize (Zea mays L.) to Exserohilum turcicum. PloS one. 2014;9(1):e87251.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thiebaut F, Rojas CA, Grativol C, Motta MR, Vieira T, Regulski M, Martienssen RA, Farinelli L, Hemerly AS, Ferreira PC. Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genomics. 2014;15(1):766.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mitchell-Olds T. Complex-trait analysis in plants. Genome Biol. 2010;11(4):113.
Article
PubMed
PubMed Central
Google Scholar
Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogura T, Busch W. From phenotypes to causal sequences: using genome wide association studies to dissect the sequence basis for variation of plant development. Curr Opin Plant Biol. 2015;23:98–108.
Article
CAS
PubMed
Google Scholar
Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci. 2013;110(2):453–8.
Article
CAS
PubMed
Google Scholar
Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Cregan PB, Song Q, Fritschi FB. Erratum to: genome-wide association study (GWAS) of carbon isotope ratio (δ 13 C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet. 2015;128(2):375–6.
Article
CAS
PubMed
Google Scholar
Wang M, Wang Q, Zhang B. Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene. 2013;530(1):26–32.
Article
CAS
PubMed
Google Scholar
Cubillos FA, Coustham V, Loudet O. Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. Curr Opin Plant Biol. 2012;15(2):192–8.
Article
CAS
PubMed
Google Scholar
Holloway B, Luck S, Beatty M, Rafalski J-A, Li B. Genome-wide expression quantitative trait loci (eQTL) analysis in maize. BMC Genomics. 2011;12(1):1.
Article
Google Scholar
Borel C, Deutsch S, Letourneau A, Migliavacca E, Montgomery SB, Dimas AS, Vejnar CE, Attar H, Gagnebin M, Gehrig C. Identification of cis-and trans-regulatory variation modulating microRNA expression levels in human fibroblasts. Genome Res. 2011;21(1):68–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong H, Luo L, Hong S, Siu H, Xiao Y, Jin L, Chen R, Xiong M. Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma. BMC Syst Biol. 2010;4(1):1.
Article
CAS
Google Scholar
Civelek M, Hagopian R, Pan C, Che N, Yang W-P, Kayne PS, Saleem NK, Cederberg H, Kuusisto J, Gargalovic PS. Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits. Hum Mol Genet. 2013;22(15):3023–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddle KJ, Deschamps M, Tailleux L, Nédélec Y, Pothlichet J, Lugo-Villarino G, Libri V, Gicquel B, Neyrolles O, Laval G. A genomic portrait of the genetic architecture and regulatory impact of microRNA expression in response to infection. Genome Res. 2014;24(5):850–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huan T, Rong J, Liu C, Zhang X, Tanriverdi K, Joehanes R, Chen BH, Murabito JM, Yao C, Courchesne P. Genome-wide identification of microRNA expression quantitative trait loci. Nat Commun. 2015;6:6601..
Article
CAS
PubMed
Google Scholar
Liu H, Qin C, Chen Z, Zuo T, Yang X, Zhou H, Xu M, Cao S, Shen Y, Lin H. Identification of miRNAs and their target genes in developing maize ears by combined small RNA and degradome sequencing. BMC Genomics. 2014;15(1):25.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chaulk SG, Ebhardt HA, Fahlman RP. Correlations of microRNA: microRNA expression patterns reveal insights into microRNA clusters and global microRNA expression patterns. Mol BioSyst. 2016;12(1):110–9.
Article
CAS
PubMed
Google Scholar
Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002;7(3):106–11.
Article
CAS
PubMed
Google Scholar
Li S-B, Xie Z-Z, Hu C-G, Zhang J-Z. A review of auxin response factors (ARFs) in plants. Front Plant Sci. 2016;7:47.
PubMed
PubMed Central
Google Scholar
Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J. 2005;44:1054–64.
Article
CAS
PubMed
Google Scholar
Liu H, Luo X, Niu L, Xiao Y, Chen L, Liu J, Wang X, Jin M, Li W, Zhang Q. Distant eQTLs and non-coding sequences play critical roles in regulating gene expression and quantitative trait variation in maize. Mol Plant. 2017;10(3):414–26.
Article
CAS
PubMed
Google Scholar
Snoek BL, Sterken MG, Bevers RP, Volkers RJ, van’t Hof A, Brenchley R, Riksen JA, Cossins A, Kammenga JE: Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans. BMC genomics 2017, 18(1):500.
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot. 2009;103(1):29–38.
Article
CAS
PubMed
Google Scholar
Chávez-Hernández EC, Alejandri-Ramírez ND, Juárez-González VT, Dinkova TD. Maize miRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis. Front Plant Sci. 2015;6:555.
Article
PubMed
PubMed Central
Google Scholar
Casati P. Analysis of UV-B regulated miRNAs and their targets in maize leaves. Plant Signal Behav. 2013;8(10):e26758.
Article
PubMed Central
CAS
Google Scholar
Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC. Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet. 2009;5(1):e1000320.
Article
PubMed
PubMed Central
CAS
Google Scholar
Spanudakis and Jackson: The role of microRNAs in the control of flowering time. J. Exper. Botany 2014, 65(2): 365–380.
Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys. 2005;433(1):212–26.
Article
CAS
PubMed
Google Scholar
Fu W, Shen Y, Hao J, Wu J, Ke L, Wu C, Huang K, Luo B, Xu M, Cheng X. Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep. 2015;5.
Martens S, Bachmair A. How cells coordinate waste removal through their major proteolytic pathways. Nat Cell Biol. 2015;17(7):841–2.
Article
CAS
PubMed
Google Scholar
Hu H, Gatti RA: MicroRNAs: new players in the DNA damage response. J Molecular Cell Biol 2010:mjq042.
Iyer LM, Anantharaman V, Aravind L. The DOMON domains are involved in heme and sugar recognition. Bioinformatics. 2007;23(20):2660–4.
Article
CAS
PubMed
Google Scholar
Zhang C, Zhang F. The multifunctions of WD40 proteins in genome integrity and cell cycle progression. J Genomics. 2015;3:40.
Article
PubMed
PubMed Central
Google Scholar
Kakimoto T. CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science. 1996:982–5.
Gallois J-L, Guyon-Debast A, Lécureuil A, Vezon D, Carpentier V, Bonhomme S, Guerche P. The Arabidopsis proteasome RPT5 subunits are essential for gametophyte development and show accession-dependent redundancy. Plant Cell. 2009;21(2):442–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zou Q, Liang Y, Luo H, Yu W: miRNA-mediated RNAa by targeting enhancers. In: RNA Activation. Springer; 2017: 113–125.
Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y. MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017;14(10):1326–34.
Article
PubMed
Google Scholar
Huang V: Endogenous miRNAa: miRNA-mediated gene Upregulation. In: RNA Activation. Springer; 2017: 65–79.
Kremling KA, Chen S-Y, Su M-H, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A, Bradbury PJ, Buckler ES. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature. 2018;555(7697):520.
Article
CAS
PubMed
Google Scholar
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):1.
Article
CAS
Google Scholar
Box GE, Cox DR. An analysis of transformations. J R Stat Soc Ser B Methodol. 1964:211–52.
Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C: Construction of the third generation Zea mays haplotype map. GigaSci. 2018(7):1–12.
Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S. LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3: genes| genomes|. Genetics. 2015;5(11):2383–90.
Google Scholar
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5.
Article
CAS
PubMed
Google Scholar