Stuedemann JA, Hoveland CS. Fescue endophyte: history and impact on animal agriculture. J Prod Agric. 1988;1:39–44.
Article
Google Scholar
Young CA, Charlton ND, Takach JE, Swoboda G, Trammell MA, Huhman DV, Hopkins AA. Characterization of Epichloe coenophiala within the US: are all tall fescue endophytes created equal? Front Chem. 2014;2:95. https://doi.org/10.3389/fchem.2014.00095.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoveland CS, Schmidt SP, King CC Jr, Odom JW, Clark EM, McGuire JA, et al. Steer performance and association of Acremonium coenophialum fungal endophyte on tall fescue pastures. Agron J. 1983;75:821–4.
Article
Google Scholar
Peters CW, Grigsby KN, Aldrich CG, Paterson JA, Lipsey RJ, Kerley MS, Garner GB. Performance, forage utilization, and ergovaline consumption by beef cows grazing endophyte fungus-infected tall fescue, endophyte fungus-free tall fescue, and orchardgrass pastures. J Anim Sci. 1992;70:1550–61.
Article
CAS
PubMed
Google Scholar
Duckett SK, Andrae JG, Pratt SL. Exposure to ergot alkaloids during gestation reduces fetal growth in sheep. Front Chem. 2014;2:68. https://doi.org/10.3389/fchem.2014.00068.
Article
CAS
PubMed
PubMed Central
Google Scholar
Britt JL, Greene MA, Bridges WC, Klotz JL, Aiken GE, Andrae JG, et al. Ergot alkaloid exposure during gestation alters. I. Maternal characteristics and placental development of pregnant ewes1. J Anim Sci. 2019;97(4):1874–90.
Article
PubMed
PubMed Central
Google Scholar
Klotz JL, Britt JL, Miller MF, Snider MA, Aiken GE, Long NM, et al. Ergot alkaloid exposure during gestation alters: II. Uterine and umbilical artery vasoactivity1. J Anim Sci. 2019;97(4):1891–902.
Article
PubMed
PubMed Central
Google Scholar
Greene MA, Britt JL, Powell RR, Feltus FA, Bridges WC, Bruce T, et al. Ergot alkaloid exposure during gestation alters: 3. Fetal Growth, Muscle Fiber Development and miRNA Transcriptome. J Anim Sci. 2019;97(4):1874–90. https://doi.org/10.1093/jas/skz068.
Sharma D, Sharma P, Shastri S. Genetic, metabolic and endocrine aspect of intrauterine growth restriction: an update. J Matern Fetal Neonatal Med. 2017;30(19):2263–75.
Article
CAS
PubMed
Google Scholar
Froen JF, Gardosi JO, Thurmann A, Francis A, Stray-Pedersen B. Restricted fetal growth in sudden intrauterine unexplained death. Acta Obstet Gynecol Scand. 2004;83(9):801–7.
Article
PubMed
Google Scholar
McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med. 1999;340(16):1234–8.
Article
CAS
PubMed
Google Scholar
Cohen E, Baerts W, van Bel F. Brain-sparing in intrauterine growth restriction: considerations for the neonatologist. Neonatology. 2015;108(4):269–76.
Article
PubMed
Google Scholar
Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35(7):730–43.
Article
CAS
PubMed
Google Scholar
Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Wallace JM, et al. Animal models of placental angiogenesis. Placenta. 2005;26(10):689–708.
Article
CAS
PubMed
Google Scholar
Reynolds LP, Borowicz PP, Vonnahme KA, Johnson ML, Grazul-Bilska AT, Redmer DA, et al. Placental angiogenesis in sheep models of compromised pregnancy. J Physiol. 2005;565(Pt 1):43–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang U, Baker RS, Braems G, Zygmunt M, Kunzel W, Clark KE. Uterine blood flow--a determinant of fetal growth. Eur J Obstet Gynecol Reprod Biol. 2003;110(Suppl 1):S55–61.
Article
PubMed
Google Scholar
Marconi AM, Ronzoni S, Vailati S, Bozzetti P, Morabito A, Battaglia FC. Neonatal morbidity and mortality in intrauterine growth restricted (IUGR) pregnancies is predicated upon prenatal diagnosis of clinical severity. Reprod Sci. 2009;16(4):373–9.
Article
PubMed
Google Scholar
Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, et al. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol. 2006;572(Pt 1):51–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace JM, Regnault TR, Limesand SW, Hay WW Jr, Anthony RV. Investigating the causes of low birth weight in contrasting ovine paradigms. J Physiol. 2005;565(Pt 1):19–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dyer DC. Evidence that ergovaline acts on serotonin receptors. Life Sci. 1993;53(14):PL223–8.
Article
CAS
PubMed
Google Scholar
Klotz JL, Brown KR, Xue Y, Matthews JC, Boling JA, Burris WR, et al. Alterations in serotonin receptor-induced contractility of bovine lateral saphenous vein in cattle grazing endophyte-infected tall fescue. J Anim Sci. 2012;90(2):682–93.
Article
CAS
PubMed
Google Scholar
Klotz JL, Aiken GE, Johnson JM, Brown KR, Bush LP, Strickland JR. Antagonism of lateral saphenous vein serotonin receptors from steers grazing endophyte-free, wild-type, or novel endophyte-infected tall fescue. J Anim Sci. 2013;91(9):4492–500.
Article
CAS
PubMed
Google Scholar
Poole DH, Lyons SE, Poole RK, Poore MH. Ergot alkaloids induce vasoconstriction of bovine uterine and ovarian blood vessels. J Anim Sci. 2018;96(11):4812–22. https://doi.org/10.1093/jas/sky328.
Barry JS, Anthony RV. The pregnant sheep as a model for human pregnancy. Theriogenology. 2008;69(1):55–67.
Article
CAS
PubMed
Google Scholar
Leiser R, Krebs C, Ebert B, Dantzer V. Placental vascular corrosion cast studies: a comparison between ruminants and humans. Microsc Res Tech. 1997;38(1–2):76–87.
Article
CAS
PubMed
Google Scholar
Beede KA, Limesand SW, Petersen JL, Yates DT. Real supermodels wear wool: summarizing the impact of the pregnant sheep as an animal model for adaptive fetal programming. Anim Front. 2019;9(3):34–43.
Article
PubMed
PubMed Central
Google Scholar
Hay WW Jr, Brown LD, Rozance PJ, Wesolowski SR, Limesand SW. Challenges in nourishing the intrauterine growth-restricted foetus - lessons learned from studies in the intrauterine growth-restricted foetal sheep. Acta Paediatr. 2016;105(8):881–9.
Article
PubMed
PubMed Central
Google Scholar
Mikheev AM, Nabekura T, Kaddoumi A, Bammler TK, Govindarajan R, Hebert MF, et al. Profiling gene expression in human placentae of different gestational ages: an OPRU network and UW SCOR study. Reprod Sci. 2008;15(9):866–77.
Article
CAS
PubMed
Google Scholar
Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Myszczynski K, Gowkielewicz M, et al. Transcriptome profile of the human placenta. Funct Integr Genomics. 2017;17(5):551–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cox B, Leavey K, Nosi U, Wong F, Kingdom J. Placental transcriptome in development and pathology: expression, function, and methods of analysis. Am J Obstet Gynecol. 2015;213(4 Suppl):S138–51.
Article
CAS
PubMed
Google Scholar
Stegeman HJ. A study of the maturation of the placenta in sheep. Acta Morphol Neerl Scand. 1972;10(4):400.
CAS
PubMed
Google Scholar
Borowicz PP, Arnold DR, Johnson ML, Grazul-Bilska AT, Redmer DA, Reynolds LP. Placental growth throughout the last two thirds of pregnancy in sheep: vascular development and angiogenic factor expression. Biol Reprod. 2007;76(2):259–67.
Article
CAS
PubMed
Google Scholar
Reynolds LP, Borowicz PP, Caton JS, Vonnahme KA, Luther JS, Buchanan DS, et al. Uteroplacental vascular development and placental function: an update. Int J Dev Biol. 2010;54(2–3):355–66.
Article
CAS
PubMed
Google Scholar
Carr DJ, David AL, Aitken RP, Milne JS, Borowicz PP, Wallace JM, et al. Placental vascularity and markers of angiogenesis in relation to prenatal growth status in overnourished adolescent ewes. Placenta. 2016;46:79–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64(4):1033–40.
Article
CAS
PubMed
Google Scholar
Redmer DA, Milne JS, Aitken RP, Johnson ML, Borowicz PP, Reynolds LP, et al. Decreasing maternal nutrient intake during the final third of pregnancy in previously overnourished adolescent sheep: effects on maternal nutrient partitioning and feto-placental development. Placenta. 2012;33(2):114–21.
Article
CAS
PubMed
Google Scholar
Regnault TR, Galan HL, Parker TA, Anthony RV. Placental development in normal and compromised pregnancies-- a review. Placenta. 2002;23 Suppl A:S119–29.
Zhang S, Barker P, Botting KJ, Roberts CT, McMillan CM, McMillen IC, et al. Early restriction of placental growth results in placental structural and gene expression changes in late gestation independent of fetal hypoxemia. Physiol Rep. 2016;4(23):e13049. https://doi.org/10.14814/phy2.13049.
Strickland JR, Looper ML, Matthews JC, Rosenkrans CF Jr, Flythe MD, Brown KR. Board-invited review: St. Anthony’s fire in livestock: causes, mechanisms, and potential solutions. J Anim Sci. 2011;89(5):1603–26. https://doi.org/10.2527/jas.2010-3478.
Article
CAS
PubMed
Google Scholar
Klotz JL. Activities and effects of ergot alkaloids on livestock physiology and production. Toxins (Basel). 2015;7(8):2801–21. https://doi.org/10.3390/toxins7082801.
Article
CAS
Google Scholar
Yamagoe S, Mizuno S, Suzuki K. Molecular cloning of human and bovine LECT2 having neutrophil chemotactic activity and its specific expression in the liver. Biochim Biophys Acta. 1998;1396(1):105–13. https://doi.org/10.1016/s0167-4781(97)00181-4.
Article
CAS
PubMed
Google Scholar
Lan F, Misu H, Chikamoto K, Takayama H, Jujychi A, Nihri K, et al. LECT2 functions as a hepatokine that links obesity to skeletal muscle insulin resistance. Diabetes. 2014;63:1649–64. https://doi.org/10.2337/db13-07828.
Article
CAS
PubMed
Google Scholar
Jung TW, Chung YH, Kim HC, El-Aty AMA, Jeong JH. LECT2 promotes inflammation and insulin resistance in adipocytes via P38 pathways. J Mol Endocrinol. 2018;61(1):37–45. https://doi.org/10.1530/JME-17-0267.
Article
CAS
PubMed
Google Scholar
Yoo HJ, Hwang SY, Choi JH, Lee HJ, Chung HS, Seo JA, et al. Association of leukocyte cell-derived chemotaxin 2 (LECT2) with NAFLD, metabolic syndrome and atherosclerosis. PLoS One. 2017;12(4):e0174717. https://doi.org/10.1371/journal.pone.0174717.ecollection.
Article
PubMed
PubMed Central
Google Scholar
Bell AW, Ehrhardt RA. Regulation of placental nutrient transport and implications for fetal growth. Nutr Res Rev. 2002;15(2):211–30.
Article
CAS
PubMed
Google Scholar
Simmons MA, Battaglia FC, Meschia G. Placental transfer of glucose. J Dev Physiol. 1979;1(3):227–43.
CAS
PubMed
Google Scholar
Hay WW Jr, Molina RA, DiGiacomo JE, Meschia G. Model of placental glucose consumption and glucose transfer. Am J Phys. 1990;258(3 Pt 2):R569–77.
CAS
Google Scholar
Vaughan OR, Fowden AL. Placental metabolism: substrate requirements and the response to stress. Reprod Domest Anim. 2016;51(Suppl 2):25–35. https://doi.org/10.1111/rda.12797.
Jauniaux E, Hempstock J, Teng C, Battaglia FC, Burton GJ. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: maintenance of redox potential in a low oxygen environment. J Clin Endocrinol Metab. 2005;90(2):1171–5.
Article
CAS
PubMed
Google Scholar
Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond Ser B Biol Sci. 2015;370(1663):20140066.
Article
Google Scholar
Owens JA, Falconer J, Robinson JS. Effect of restriction of placental growth on fetal and utero-placental metabolism. J Dev Physiol. 1987;9(3):225–38.
CAS
PubMed
Google Scholar
Schneider H. Placental oxygen consumption. Part II: in vitro studies--a review. Placenta. 2000;21(Suppl A):S38–44.
Article
PubMed
Google Scholar
Vaughan OR, Fowden AL. Placental metabolism: substrate requirements and the response to stress. Reprod D0mest Anim. 2016;51(Suppl 2):25–35.
Article
CAS
Google Scholar
Christie WW, Noble RC. Fatty acid biosynthesis in sheep placenta and maternal and fetal adipose tissue. Biol Neonate. 1982;42(1–2):79–86.
Article
CAS
PubMed
Google Scholar
Ma Y, Zhu MJ, Uthlaut AB, Nijland MJ, Nathanielsz PW, Hess BW, et al. Upregulation of growth signaling and nutrient transporters in cotyledons of early to mid-gestational nutrient restricted ewes. Placenta. 2011;32(3):255–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cetin I, Alvino G. Intrauterine growth restriction: implications for placental metabolism and transport. A review. Placenta. 2009;30(Suppl A):S77–82.
Article
PubMed
CAS
Google Scholar
Xu Y, Wang Q, Cook TJ, Knipp GT. Effect of placental fatty acid metabolism and regulation by peroxisome proliferator activated receptor on pregnancy and fetal outcomes. J Pharm Sci. 2007;96(10):2582–606.
Article
CAS
PubMed
Google Scholar
Holdsworth-Carson SJ, Lim R, Mitton A, Whitehead C, Rice GE, Permezel M, et al. Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia. Placenta. 2010;31(3):222–9.
Article
CAS
PubMed
Google Scholar
Ganapathy V, Prasad PD. Role of transporters in placental transfer of drugs. Toxicol Appl Pharmacol. 2005;207(2 Suppl):381–7.
Article
PubMed
CAS
Google Scholar
Nagai A, Takebe K, Nio-Kobayashi J, Takahashi-Iwanaga H, Iwanaga T. Cellular expression of the monocarboxylate transporter (MCT) family in the placenta of mice. Placenta. 2010;31(2):126–33.
Article
CAS
PubMed
Google Scholar
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jungst C, Klein K, Eloranta JJ, Kullak-Ublick GA. Bile acids Downregulate the human hepatic organic anion transporter 7. J Hepatol. 2012;56:S141–S2.
Article
Google Scholar
Fontes KN, Reginatto MW, Silva NL, et al. Dysregulation of placental ABC transporters in a murine model of malaria-induced preterm labor. Sci Rep. 2019;9:11488 https://doi.org/10.1038/s41598-019-47865-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Young M. Protein turnover rate in early life. Acta Paediatr Acad Sci Hung. 1982;23(1):99–117.
CAS
PubMed
Google Scholar
Chien PF. Investigations of protein metabolism in human pregnancy: the term foetus and placenta studied using stable isotope labelled amino-acids. Clin Nutr. 1991;10(Suppl):70–6.
Article
CAS
PubMed
Google Scholar
Chung M, Teng C, Timmerman M, Meschia G, Battaglia FC. Production and utilization of amino acids by ovine placenta in vivo. Am J Phys. 1998;274(1):E13–22.
Article
CAS
Google Scholar
Vaughan OR, Rosario FJ, Powell TL, Jansson T. Regulation of placental amino acid transport and fetal growth. In: Huckle WR, editor. Molecular biology of placental development and disease 2017. p. 217–21.
Kwon H, Ford SP, Bazer FW, Spencer TE, Nathanielsz PW, Nijland MJ, et al. Maternal nutrient restriction reduces concentrations of amino acids and polyamines in ovine maternal and fetal plasma and fetal fluids. Biol Reprod. 2004;71(3):901–8.
Article
CAS
PubMed
Google Scholar
Liechty EA, Kelley J, Lemons JA. Effect of fasting on uteroplacental amino acid metabolism in the pregnant sheep. Biol Neonate. 1991;60(3–4):207–14.
Article
CAS
PubMed
Google Scholar
Klaitman V, Beer-Wiesel R, Rafaeli T, Mazor M, Erez O. The role of the coagulation system in preterm parturition. 2013. In: Perterm Birth [Internet]. IntechOpen. Available from: https://www.intechopen.com/books/preterm-birth/the-role-of-the-coagulation-system-in-preterm-parturition.
Regal JF, Gilbert JS, Burwick RM. The complement system and adverse pregnancy outcomes. Mol Immunol. 2015;67(1):56–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi K, Ezekowitz RA. The role of the mannose-binding lectin in innate immunity. Clin Infect Dis. 2005;41(Suppl 7):S440–4.
Article
CAS
PubMed
Google Scholar
Collard CD, Vakeva A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, et al. Complement activation after oxidative stress: role of the lectin complement pathway. Am J Pathol. 2000;156(5):1549–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YH, Barclay JL, He J, Luo X, O’Neill HM, Keshvari S, et al. Identification of carboxypeptidase X (CPX)-1as a positivie regulator of adipogenesis. FASEB J. 2016;30(7):2528–40. https://doi.org/10.1096/fj.201500107R.
Article
CAS
PubMed
Google Scholar
Rho SB, Byun HJ, Park SY, Chun T. Calpain 6 supports tumorigenesis by inhibiting apoptosis and facilitating angiogenesis. Cancer Lett. 2008;271(12):306–13 https://doi.org/10.1016/j.canlet.2008.06.020.
Article
CAS
PubMed
Google Scholar
Zhao SH, Tuggle CK. Linkage mapping and expression analyses of a novel gene, placentally expressed transcript 1 (PLET1) in the pig. Anim Gen. 2003;35(1):72–7 https://doi.org/10.1046/j.0268-9146.2003.01075.x.
Article
Google Scholar
Everaert C, Luypaert M, Maag JLV, Cheng QX, Dinger ME, Hellemans J, Mestdagh P. Benchmarking of RNA-sequencing analysis workflows using whole-transcriptome RT-qPCR expression data. Sci Rep 7:1559. Doi:https://doi.org/10.1038/s41598-017-01617-3.
Vatnick I, Schoknecht PA, Darrigrand R, Bell AW. Growth and metabolism of the placenta after unilateral fetectomy in twin pregnant ewes. J Dev Physiol. 1991;15(6):351–6.
CAS
PubMed
Google Scholar
Andrews S. http://www.bioinformatics.babraham.ac.uk/projects/fastqc2010. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26(7):873–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.
Article
CAS
PubMed
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Duckett SK, Furusho-Garcia I, Rico JE, McFadden JW. Flaxseed oil or n-7 fatty acid-enhanced fish oil supplementation alters fatty acid composition, plasma insulin and serum ceramide concentrations, and gene expression in lambs. Lipids. 2019;54:389–99. https://doi.org/10.1002/lipd.12156.
Article
CAS
PubMed
Google Scholar
Xie F, Xiao P, Chen D, Xu L, Zhang B. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol. 2012;80:75–84.