Kloren W, Norton BW, Waters MJ. Fleece growth in Australian cashmere goats. III. The seasonal patterns of cashmere and hair growth, and association with growth hormone, prolactin and thyroxine in blood. Crop Pasture Sci. 1993;44(5):1035–50.
Article
CAS
Google Scholar
Mcdonald B, Hoey W, Hopkins P. Cyclical fleece growth in cashmere goats. Aust J Agric Res. 1987;38(3):597.
Article
Google Scholar
Baker RE, Murray PJ. Understanding hair follicle cycling: a systems approach. Curr Opin Genet Dev. 2012;22(6):607–12.
Article
CAS
PubMed
Google Scholar
Alonso L, Fuchs E. The hair cycle. J Cell Sci. 2006;119(Pt 3):391–3.
Article
CAS
PubMed
Google Scholar
Rishikaysh P, Dev K, Diaz D, Qureshi W, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15(1):1647–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oh HS, Smart RC. An estrogen receptor pathway regulates the telogen-anagen hair follicle transition and influences epidermal cell proliferation. P Natl Acad Sci. 1996;93(22):12525–30.
Article
CAS
Google Scholar
Ibraheem M, Galbraith H, Scaife J, Ewen S. Growth of secondary hair follicles of the cashmere goat in vitro and their response to prolactin and melatonin. J Anat. 1994;185(Pt 1):135–42.
CAS
PubMed
PubMed Central
Google Scholar
Foitzik K, Lindner G, Mueller-Roever S, Maurer M, Botchkareva N, Botchkarev V, Handjiski B. Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J. 2000;14(5):752–60.
Article
CAS
PubMed
Google Scholar
Castexrizzi N, Lachgar S, Charveron M, Gall Y. Implication of VEGF, steroid hormones and neuropeptides in hair follicle cell responses. Ann Dermatol Vener. 2002;129(5 Pt 2):783–6.
CAS
Google Scholar
Guttman M, Rinn JL. Modular regulatory principles of large non- coding RNAs. Nature. 2012;482(7385):339–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarropoulos I, Marin R, Cardoso-Moreira M, Kaessmann H. Developmental dynamics of lncRNAs across mammalian organs and species. Nature. 2019;571(7766):510–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, Büscher M, Pandolfini L, Zhang A, Pluchino S. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol. 2018;19(1):32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nitsche A, Stadler PF. Evolutionary clues in lncRNAs. Wiley Interdiscip Rev RNA. 2017;8(1):e1376.
Article
CAS
Google Scholar
Roberts TC, Morris KV, Weinberg MS. Perspectives on the mechanism of transcriptional regulation by long non-coding RNAs. Epigenetics. 2014;9(1):13–20.
Article
CAS
PubMed
Google Scholar
Mitchell G, Julie D, Bryce WC, Manuel G, Jennifer KG, Glen M, Geneva Y, Anne Bergstrom L, Robert A, Laurakay B, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477(7364):295–300.
Article
CAS
Google Scholar
Lin CM, Liu Y, Huang K. Chen X-c, Cai B-z, Li H-h, Yuan Y-p, Zhang H, Li Y. long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem Bioph Res Co. 2014;453(3):508–14.
Article
CAS
Google Scholar
Zhao B, Chen Y, Hu S, Yang N, Wang M, Liu M, Li J, Xiao Y, Wu X. Systematic Analysis of Non-coding RNAs Involved in the Angora Rabbit (Oryctolagus cuniculus) Hair Follicle Cycle by RNA Sequencing. Front Gene. 2019;10(407):eCollection 2019.
Google Scholar
Sulayman A, Tian K, Huang X, Tian Y, Xu X, Fu X, Zhao B, Wu W, Wang D, Tulafu AYH. Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep. 2019;9(1):8501.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang S, Wei G, Zhixin L, Yang G, Beilei J, Lei Q, Zhiying Z, Xin W. Integrated analysis of coding genes and non-coding RNAs during hair follicle cycle of cashmere goat (Capra hircus). BMC Genomics. 2017;18(1):767.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weikard R, Hadlich F, Kuehn C. Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics. 2013;14:798.
Article
PubMed
PubMed Central
CAS
Google Scholar
Song LL, Cui Y, Yu SJ, Liu PG, Liu J, Yang X, He JF, Zhang Q. Expression characteristics of BMP2, BMPR-IA and noggin in different stages of hair follicle in yak skin. Gen Comp Endocr. 2018;260:18–24.
Article
CAS
PubMed
Google Scholar
Song LL, Cui Y, Xiao L, Yu SJ, He JF. DHT and E2 synthesis-related proteins and receptors expression in male yak skin during different hair follicle stages. Gen Comp Endocr. 2020;286:113245.
Article
CAS
PubMed
Google Scholar
Song LL, Cui Y, Yu SJ, Liu P-G, He JF. TGF-beta and HSP70 profiles during transformation of yak hair follicles from the anagen to catagen stage. J Cell Physiol. 2019;234(9):15638–46.
Article
CAS
Google Scholar
Jia C, Wang H, Li C, Wu X, Zan L, Ding X, Guo X, Bao P, Pei J, Chu M, et al. Genome-wide detection of copy number variations in polled yak using the Illumina BovineHD BeadChip. BMC Genomics. 2019;20(1):376.
Article
PubMed
PubMed Central
Google Scholar
Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai M-C, Hung T, Argani P, Rinn JL, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gutschner T, Hämmerle M, Diederichs S. MALAT1 —a paradigm for long noncoding RNA function in cancer. J Mol Med. 2013;91(7):791–801.
Article
CAS
PubMed
Google Scholar
Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, Willard HF. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71(3):527–42.
Article
CAS
PubMed
Google Scholar
Jeon Y, Lee JT. YY1 tethers Xist RNA to the inactive X nucleation center. Cell. 2011;146(1):119–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nitsche A, Rose D, Fasold M, Reiche K, Stadler PF. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. RNA. 2015;21(5):801–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnsson P, Lipovich L, Grandér D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 2014;1840(3):1063–71.
Article
CAS
PubMed
Google Scholar
Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. Principles of long noncoding RNA evolution derived from direct comparison of Transcriptomes in 17 species. Cell Rep. 2015;11(7):1110–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7(3):562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang S, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Yi Z. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166.
Article
CAS
Google Scholar
Lei K, Yong Z, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Ge G. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007;35(Web Server issue):W345–9.
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J. Pfam: the protein families database. Nucleic Acids Res. 2014;42(D1):D222–30.
Article
CAS
PubMed
Google Scholar
Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics. 2014;15(1):311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Valentin W, Fabrice L, Benoît H, Guillaume R, Lætitia L, Tosso L, Vidhya J, Edouard C, Audrey D, Hannes L. FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res. 2017;45(8):e57.
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bao P, Luo J, Liu Y, Chu M, Ren Q, Guo X, Tang B, Ding X, Qiu Q, Pan H, et al. The seasonal development dynamics of the yak hair cycle transcriptome. BMC Genomics. 2020;21(1):355.
Article
CAS
PubMed
PubMed Central
Google Scholar
Camacho CG, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.
Zhang S, Qin C, Cao G, Xin W, Feng C, Zhang W. Systematic analysis of long noncoding RNAs in the senescence-accelerated mouse prone 8 brain using RNA sequencing. Mol Ther Nucleic Acids. 2016;5(8):e343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ji XY, Wang JX, Liu B, Zheng ZQ, Fu SY, Mekuriaw TG, Bai X, Bai YS, Li H, Zhang WG. Comparative Transcriptome analysis reveals that a ubiquitin-mediated proteolysis pathway is important for primary and secondary hair follicle development in cashmere goats. PLoS One. 2016;11(10):e0156124.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huntzicker EG, Oro AE. Controlling hair follicle signaling pathways through Polyubiquitination. J Invest Dermatol. 2008;128(5):1081–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai SY, Sennett R, Rezza A, Clavel C, Grisanti L, Zemla R, Najam S, Rendl M. Wnt/β-catenin signaling in dermal condensates is required for hair follicle formation. Dev Biol. 2014;385(2):179–88.
Article
CAS
PubMed
Google Scholar
Yamamoto N, Tanigaki K, Han H, Hiai H, Honjo T. Notch/RBP-J signaling regulates epidermis/hair fate determination of hair follicular stem cells. Curr Biol. 2003;13(4):333–8.
Article
CAS
PubMed
Google Scholar
Chao L, Li Y, Zhou GX, Gao Y, Ma S, Chen YL, Song JZ, Wang XL. Whole-genome bisulfite sequencing of goat skins identifies signatures associated with hair cycling. BMC Genomics. 2018;19(1):638.
Article
CAS
Google Scholar
Nyberg KG, Machado CA, Notes A. Comparative expression dynamics of Intergenic long noncoding RNAs in the genus drosophila. Genome Biol Evol. 2016;8(6):1839–58.
Article
PubMed
PubMed Central
Google Scholar
Infante P, Severini LL, Bernardi F, Bufalieri F, Marcotullio LD. Targeting hedgehog Signalling through the Ubiquitylation process: the multiple roles of the HECT-E3 ligase Itch. Cells. 2019;8(2):98.
Article
CAS
PubMed Central
Google Scholar
Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells. 2020;38(2):301–14.
CAS
PubMed
Google Scholar
Massa F, Tammaro R, Prado MA, Cesana M, Lee BH. The deubiquitinating enzyme USP14 controls ciliogenesis and hedgehog signalling. Hum Mol Genet. 2018;28(5):764–77.
Article
PubMed Central
CAS
Google Scholar
Gao Y, Wang X, Yan H, Zeng J, Ma S, Niu Y, Zhou G, Jiang Y, Chen Y. Comparative Transcriptome analysis of fetal skin reveals key genes related to hair follicle morphogenesis in cashmere goats. PLoS One. 2016;11(3):e0151118.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jacobo A, Dasgupta A, Erzberger A, Siletti K, Hudspeth AJ. Notch-mediated determination of hair-bundle polarity in Mechanosensory hair cells of the Zebrafish lateral line. Curr Biol. 2019;29(21):3579–87.
Article
CAS
PubMed
Google Scholar
Stenn KS, R. P: controls of hair follicle cycling. Physiol Rev. 2001;81(1):449–94.
Article
CAS
PubMed
Google Scholar
Sennett R, Rendl M. Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol. 2012;23(8):917–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiao Q, Yin RH, Zhao SJ, Wang ZY, Zhu YB, Wang W, Zheng YY, Yin XB, Guo D, Wang SQ, et al. Identification and molecular analysis of a lncRNA-HOTAIR transcript from secondary hair follicle of cashmere goat reveal integrated regulatory network with the expression regulated potentially by its promoter methylation. Gene. 2019;688:182–92.
Article
CAS
PubMed
Google Scholar
Wei G, Wang SH, Sun B, Zhang YL, Shen W, Hasan K. Melatonin promotes cashmere goat (Capra hircus) secondary hair follicle growth: a view from integrated analysis of long non-coding and coding RNAs. Cell Cycle. 2018;17(10):1255–67.
Article
CAS
Google Scholar
Mater DV, Kolligs FT, Dlugosz AA, Fearon ER. Transient activation of Beta -catenin signaling in cutaneous keratinocytes is sufficient to trigger the active growth phase of the hair cycle in mice. Genes Dev. 2003;17(10):1219–24.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG. HIFalpha targeted for VHL-mediated destruction by Proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8.
Article
CAS
PubMed
Google Scholar
Marín-Béjar O, Mas AM, González J, Martinez D, Athie A, Morales X, Galduroz M, Raimondi I, Grossi E, Guo S. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol. 2017;18(1):202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010;465(7301):1033–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng H, Li J, Liu D, Li H, Samudrala R, Yu J, Wong GK-S, Wang J, Zhang J. Mouse transcriptome: neutral evolution of ‘non-coding’ complementary DNAs. Nature. 2004;431(7010):1–757.
Article
PubMed
CAS
Google Scholar
Lin N, Chang KY, Li Z, Gates K, Rana TM. An evolutionarily conserved long noncoding RNA TUNA controls Pluripotency and neural lineage commitment. Mol Cell. 2014;53(6):1005–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulitsky I. Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet. 2016;17(10):601.
Article
CAS
PubMed
Google Scholar
Chen J, Shishkin AA, Zhu X, Kadri S, Maza I, Guttman M, Hanna JH, Regev A, Garber M. Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs. Genome Biol. 2016;17(1):19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Gruetzner F, Kaessmann H. The evolution of IncRNA repertoires and expression patterns in tetrapods. Nature. 2014;505(7485):635–40 a611.
Article
CAS
PubMed
Google Scholar
Meyer A. From donkeys and cows to whales. Nature. 2000;406(6797):677–8.
Article
CAS
Google Scholar
Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature. 2007;450(7173):1190–4.
Article
CAS
PubMed
Google Scholar
Geisler JH. Whale evolution: dispersal by paddle or fluke. Curr Biol. 2019;29(8):R294–6.
Article
CAS
PubMed
Google Scholar