Ge ZW, Liu XB, Zhao K, Yang ZL. Species diversity of Flammulina in China: new varieties and a new record. Mycosystema. 2015;34:589–603.
Google Scholar
Wang PM, Liu XB, Dai YC, Horak E, Steffen K, Yang ZL. Phylogeny and species delimitation of Flammulina: taxonomic status of winter mushroom in East Asia and a new European species identified using an integrated approach. Mycol Prog. 2018;17(9):1013–30.
Li X, Li Y. Quality comparison and analysis on white Flammulina velutipes grown with bottle lines in China. Edible Fungi China. 2014;33:20–4 (In Chinese).
CAS
Google Scholar
Lin L, Cui F, Zhang J, Gao X, Zhou M, Xu N, Zhao H, Liu M, Zhang C, Jia L. Antioxidative and renoprotective effects of residue polysaccharides from Flammulina velutipes. Carbohydr Polym. 2016;46:388–95.
Article
CAS
Google Scholar
Su A, Yang W, Zhao L, Pei F, Yuan B, Zhong L, Ma G, Hu Q. Flammulina velutipes polysaccharides improve scopolamine-induced learning and memory impairment in mice by modulating gut microbiota composition. Food Funct. 2018;9(3):1424–32.
Article
PubMed
CAS
Google Scholar
Zhang T, Ye J, Xue C, Wang Y, Liao W, Mao L, Yuan M, Lian S. Structural characteristics and bioactive properties of a novel polysaccharide from Flammulina velutipes. Carbohydr Polym. 2018;197:147–56.
Article
PubMed
CAS
Google Scholar
Hu Q, Yu J, Yang W, Kimatu BM, Fang Y, Ma N, Pei F. Identification of flavonoids from Flammulina velutipes and its neuroprotective effect on pheochromocytoma-12 cells. Food Chem. 2016;204:274–82.
Article
PubMed
CAS
Google Scholar
Wang Y, Bao L, Yang X, Li L, Li S, Gao H, Yao XS, Wen H, Liu HW. Bioactive sesquiterpenoids from the solid culture of the edible mushroom Flammulina velutipes growing on cooked rice. Food Chem. 2012;132(3):1346–53.
Article
PubMed
CAS
Google Scholar
Tao Q, Ma K, Yang Y, Wang K, Chen B, Huang Y, Han J, Bao L, Liu XB, Yang Z, Yin WB, Liu H. Bioactive sesquiterpenes from the edible mushroom Flammulina velutipes and their biosynthetic pathway confirmed by genome analysis and chemical evidence. J Org Chem. 2016;81(20):9867–77.
Article
PubMed
CAS
Google Scholar
Li HP, Yang WJ, Qu SX, Pei F, Luo X, Mariga AM, Ma L. Variation of volatile terpenes in the edible fungi mycelia Flammulina velutipes and communications in fungus-mite interactions. Food Res Int. 2018;103:150–5.
Article
PubMed
CAS
Google Scholar
Rahman MA, Abdullah N, Aminudin N. Antioxidative effects and inhibition of human low density lipoprotein oxidation in vitro of polyphenolic compounds in Flammulina velutipes (Golden needle mushroom). Oxidative Med Cell Longev. 2015;403023.
Tang C, Hoo PC, Tan LT, Pusparajah P, Khan TM, Lee LH, Goh BH, Chan KG. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol. 2016;7:474.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kasprzycka A, Lalak-Kańczugowska J, Tys J. Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and methane production. Bioresour Technol. 2018;263:660–4.
Article
PubMed
CAS
Google Scholar
Avin FA, Bhassu S, Shin TY, Sabaratnam V. Molecular classification and phylogenetic relationships of selected edible Basidiomycetes species. Mol Biol Rep. 2012;39(7):7355–64.
Article
PubMed
CAS
Google Scholar
Liu XB, Feng B, Li J, Yan C, Yang ZL. Genetic diversity and breeding history of winter mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene. 2016;591:227–35.
Article
PubMed
CAS
Google Scholar
Wang Q, Zhang J, Li C, Wang B, Nong W, Bian Y, Xiao Y. Phenotypic and genetic diversity of the culinary-medicinal winter mushroom Flammulina velutipes (Agaricomycetes) in China. Int J Med Mushrooms. 2018;20(6):517–36.
Article
PubMed
Google Scholar
Wang Y, Bao L, Liu D, Yang X, Li S, Gao H, Yao X, Wen H, Liu H. Two new sesquiterpenes and six norsesquiterpenes from the solid culture of the edible mushroom Flammulina velutipes. Tetrahedron. 2012;68(14):3012–8.
Article
CAS
Google Scholar
Reis FS, Barros L, Martins A, Ferreira IC. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol. 2012;50(2):191–7.
Article
PubMed
CAS
Google Scholar
Tsai SY, Huang EW, Lin CP. Compositional differences of the winter culinary-medicinal mushroom, Flammulina velutipes (Agaricomycetes), under three types of light conditions. Int J Med Mushrooms. 2017;19(3):267–76.
Article
PubMed
Google Scholar
Miyazawa N, Yoshimoto H, Kurihara S, Hamaya T, Eguchi F. Improvement of diet-induced obesity by ingestion of mushroom chitosan prepared from Flammulina velutipes. J Oleo Sci. 2018;67(2):245–54.
Article
PubMed
CAS
Google Scholar
Wu M, Luo X, Xu X, Wei W, Yu M, Jiang N, Ye L, Yang Z, Fei X. Antioxidant and immunomodulatory activities of a polysaccharide from Flammulina velutipes. J Tradit Chin Med. 2014;34(6):733–40 (In Chinese).
Article
PubMed
Google Scholar
Huang Q, Jia Y, Wan Y, Li H, Jiang R. Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci. 2015;80(7):H1612–8.
Article
PubMed
CAS
Google Scholar
Rugolo M, Levin L, Lechner BE. Flammulina velutipes: An option for "alperujo" use. Rev Iberoam Micol. 2016;33(4):242–7.
Article
PubMed
Google Scholar
Xie C, Gong W, Yan L, Zhu Z, Hu Z, Peng Y. Biodegradation of ramie stalk by Flammulina velutipes: mushroom production and substrate utilization. AMB Express. 2017;7:171.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalač P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 2013;93(2):209–18.
Article
PubMed
CAS
Google Scholar
Wang YQ, Bao L, Yang XL, Guo H, Dai HQ, Guo H, Yao XS, Zhang LX, Liu HW. Four new cuparene-type sesquiterpenes from Flammulina velutipes. Helvetica Chimica Acta. 2012;95:261–7.
Article
CAS
Google Scholar
Tung CH, Lin CC, Tung CC, Chen SF, Sheu F, Lu TJ. Combination of on-line desalting and HPLC-UV-ESI-MS for simultaneous detection and identification of FIP-fve and flammutoxin in Flammulina velutipes. J Food Drug Anal. 2018;26(3):1045–53.
Article
PubMed
CAS
Google Scholar
Park YJ, Baek JH, Lee S, Kim C, Rhee H, Kim H, Seo JS, Park HR, Yoon DE, Nam JY, et al. Whole genome and global gene expression analyses of the model mushroom Flammulina velutipes reveal a high capacity for lignocellulose degradation. PLoS One. 2014;9(4):e93560.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie C, Yan L, Gong W, Zhu Z, Tan S, Chen D, Hu Z, Peng Y. Effects of different substrates on lignocellulosic enzyme expression, enzyme activity, substrate utilization and biological efficiency of Pleurotus eryngii. Cell Physiol Biochem. 2016;39(4):1479–94.
Article
PubMed
CAS
Google Scholar
Song HY, Kim DH, Kim JM. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci Rep. 2018;8(1):8983.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu TH, Ye ZW, Guo LQ, Yang XQ, Lin JF. De novo transcriptome sequencing of Flammulina velutipes uncover candidate genes associated with cold-induced fruiting. J Basic Microbiol. 2018;58:698–703.
Article
PubMed
CAS
Google Scholar
Liu JY, Meng JL, Chang MC, Feng CP, Yuan LG. iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteome. 2017;156:75–84.
Article
CAS
Google Scholar
Kurata A, Fukuta Y, Mori M, Kishimoto N, Shirasaka N. Draft genome sequence of the basidiomycetous fungus Flammulina velutipes TR19. Genome Announc. 2016;4(3):e00505–16.
Article
PubMed
PubMed Central
Google Scholar
Liu JY, Chang MC, Meng JL, Feng CP, Wang Y. A comparative proteome approach reveals metabolic changes associated with Flammulina velutipes mycelia in response to cold and light stress. J Agric Food Chem. 2018;66(14):3716–25.
Article
PubMed
CAS
Google Scholar
Doroghazi JR, Albright J, Goering AW, Ju KS, Haines RR, Tchalukov KA, Labeda DP, Kelleher NL, Metcalf WW. A road map for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol. 2014;10(11):963–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Min B, Kim S, Oh YL, Kong WS, Park H, Cho H, Jang KY, Kim JG, Choi IG. Genomic discovery of the hypsin gene and biosynthetic pathways for terpenoids in Hypsizygus marmoreus. BMC Genomics. 2018;19(1):789.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: avenues and challenges. Synth Syst Biotechnol. 2018;3(3):163–78.
Article
PubMed
PubMed Central
Google Scholar
Lind AL, Wisecaver JH, Lameiras C, Wiemann P, Palmer JM, Keller NP, Rodrigues F, Goldman GH, Rokas A. Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biol. 2017;15(11):e2003583.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bailey AM, Alberti F, Kilaru S, Collins CM, de Mattos-Shipley K, Hartley AJ, Hayes P, Griffin A, Lazarus CM, Cox RJ, et al. Identification and manipulation of the pleuromutilin gene cluster from Clitopilus passeckerianus for increased rapid antibiotic production. Sci Rep. 2016;6:25202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen J, Zeng X, Yang YL, Xing YM, Zhang Q, Li JM, Ma K, Liu HW, Guo SX. Genomic and transcriptomic analyses reveal differential regulation of diverse terpenoid and polyketides secondary metabolites in Hericium erinaceus. Sci Rep. 2017;7:10151.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang YL, Zhang S, Ma K, Xu Y, Tao Q, Chen Y, Chen J, Guo S, Ren J, Wang W, et al. Discovery and characterization of a new family of diterpene cyclases in bacteria and fungi. Angew Chem Int Ed. 2017;56:4749–52.
Article
CAS
Google Scholar
Chen S, Xu J, Liu C, Zhu Y, Nelson DR, Zhou S, Li C, Wang L, Guo X, Sun Y, et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat Commun. 2012;3:913.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma Z, Ye C, Deng W, Xu M, Wang Q, Liu G, Wang F, Liu L, Xu Z, Shi G, et al. Reconstruction and analysis of a genome-scale metabolic model of Ganoderma lucidum for improved extracellular polysaccharide production. Front Microbiol. 2018;9:3076.
Article
PubMed
PubMed Central
Google Scholar
Wawrzyn GT, Quin MB, Choudhary S, López-Gallego F, Schmidt-Dannert C. Draft genome of Omphalotus olearius provides a predictive framework for sesquiterpenoid natural product biosynthesis in Basidiomycota. Chem Biol. 2012;19:772–83.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P. Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol. 2007;73:7185–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.
Article
PubMed
CAS
Google Scholar
Ruthes AC, Smiderle FR, Iacomini M. Mushroom heteropolysaccharides: a review on their sources, structure and biological effects. Carbohydr Polym. 2016;136:358–75.
Article
PubMed
CAS
Google Scholar
Shen B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol. 2003;7:285–95.
Article
PubMed
CAS
Google Scholar
Shui W, Xiong Y, Xiao W, Qi X, Zhang Y, Lin Y, Guo Y, Zhang Z, Wang Q, Ma Y. Understanding the mechanism of thermotolerance distinct from heat shock response through proteomic analysis of industrial strains of Saccharomyces cerevisiae. Mol Cell Proteomics. 2015;14:A779–80.
Article
CAS
Google Scholar
Livingstone PG, Morphew RM, Whitworth DE. Genome sequencing and pan-Genome analysis of 23 Corallococcus spp. strains reveal unexpected diversity, with particular plasticity of predatory gene sets. Front Microbiol. 2018;199:3187.
Article
Google Scholar
Meng DM, Wang HD, Zhang YX, Xi ZA, Yang R, Sheng JP, Zhang XH, Ding Y, Wang JP, Fan ZC. Ornithine decarboxylase is involved in methyljasmonate-regulated postharvest quality retention in button mushrooms (Agaricus bisporus). J Sci Food Agric. 2019;99:790–6.
Article
PubMed
CAS
Google Scholar
Bakti F, Király A, Orosz E, Miskei M, Emri T, Leiter É, Pócsi I. Study on the glutathione metabolism of the filamentous fungus Aspergillus nidulans. Acta Microbiol Immunol Hung. 2017;64(3):255–72.
Article
PubMed
CAS
Google Scholar
Tiwari S, Thakur R, Shankar J. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int. 2015;132635.
Liu J, Chang M, Meng J, Feng C, Zhao H, Zhang M. Comparative proteome reveals metabolic changes during the fruiting process in Flammulina velutipes. J Agric Food Chem. 2017;65(24):5091–100.
Article
PubMed
CAS
Google Scholar
Luo R, Guo L, Lin J, Han F, Li Q, Kang L. A Novel high-temperature-tolerant Strain of Flammulina velutipes by mutagenesis. Edible Fungi of China. 2016;35(4):18–23 (In Chinese).
Google Scholar
Liu F. Preliminary study of Flammulina velutipes genome and transcriptome. Fuzhou: PhD Dissertation, Fujian Agriculture and Forestry University; 2014. p. 1–117. (In Chinese).
Google Scholar
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc Nat Acad Sci United States of America. 2005;102(39):13950–5.
Article
CAS
Google Scholar
George Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol. 2015;23:148–54.
Article
PubMed
CAS
Google Scholar
Wirojsirasak W, Kalapanulak S, Saithong T. Pan- and core- gene association networks: Integrative approaches to understanding biological regulation. PLoS One. 2019;14(1):e0210481.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28:3150–2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
PubMed
CAS
Google Scholar
Anders S, Huber W. Differential expression of RNA-Seq data at the gene level-the DESeq package, vol. 10. Heidelberg: European Molecular Biology Laboratory (EMBL); 2012. p. f1000research.
Google Scholar
Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18:207–8.
Article
PubMed
CAS
Google Scholar
Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015;43:W237–43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Blin K, Kim HU, Medema MH, Webe T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform. 2019;20(4):1103–13.
Article
PubMed
CAS
Google Scholar
Shin J, Kim JE, Lee YW, Son H. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum. Toxins (Basel). 2018;10(3):E112.
Article
CAS
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(Database issue):D233–8.
Article
PubMed
CAS
Google Scholar
Tørresen OK, Star B, Jentoft S, Reinar WB, Miller GH Jr, Walenz BP, Knight J, Ekholm JM, Peluso P, Edvardsen RB, Tooming-Klunderud A, Skage M, Lien S, Jakobsen KS, Nederbragt AJ. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics. 2017;18:95.