Naveena BM, Kiran M. Buffalo meat quality, composition, and processing characteristics: contribution to the global economy and nutritional security. Anim Front. 2014;4:18–24.
Article
Google Scholar
FAO, 2013. http://www.fao.org/faostat/en/#data.
Su S, Bi Y, Wong G, Gray GC, Gao GF, Li S. The epidemiology, evolution and recent outbreaks of avian influenza viruses in China: a review. J Virol. 2015;89:8671–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sánchez-Cordón PJ, Montoya M, Reis AL, Dixon LK. African swine fever: a re-emerging viral disease threatening the global pig industry. Vet J. 2018;233:41–8.
Article
PubMed
PubMed Central
Google Scholar
Kandeepan G, Mendiratta SK, Shukla V, Vishnuraj MR. Processing characteristics of buffalo meat-a review. J Meat Sci Technol. 2013;1:1–11..
Google Scholar
Wanapat M, Kang SC. World buffalo production: challenges in meat and milk production, and mitigation of methane emission. Buffalo Bull. 2013;32:1–21.
Google Scholar
Hudson NJ, Reverter A, Greenwood PL, Guo B, Café LM, Dalrymple BP. Longitudinal muscle gene expression patterns associated with differential intramuscular fat in cattle. Animal. 2015;9:650–9.
Article
CAS
PubMed
Google Scholar
Park SJ, Beak SH, Jung DJS, Kim SY, Jeong IH, Piao MY, et al. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle. Asian-Australas J Anim Sci. 2018;31:1043–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bouchard C. Genetic factors in the regulation of adipose tissue distribution. Acta Medica Scand Suppl. 2010;222:135–41.
Article
Google Scholar
Campos CF, Duarte MS, Guimarães SE, Verardo LL, Wei S, Du M, et al. Review: animal model and the current understanding of molecule dynamics of adipogenesis. Animal. 2016;10:927–32.
Article
CAS
PubMed
Google Scholar
Gotoh T, Albrecht E, Teuscher F, Kawabata K, Sakashita K, Iwamoto H, et al. Differences in muscle and fat accretion in Japanese black and European cattle. Meat Sci. 2009;82:300–8.
Article
CAS
PubMed
Google Scholar
Wang YH, Bower NI, Reverter A, Tan SH, De Jager N, Wang R, et al. Gene expression patterns during intramuscular fat development in cattle. J Anim Sci. 2009;87:119–30.
Article
CAS
PubMed
Google Scholar
De Jager N, Hudson NJ, Reverter A, Barnard R, Café LM, Greenwood PL, et al. Gene expression phenotypes for lipid metabolism and intramuscular fat in skeletal muscle of cattle. J Anim Sci. 2013;91:1112–28.
Article
PubMed
Google Scholar
Ramayo-Caldas Y, Fortes MR, Hudson NJ, Porto-Neto LR, Bolormaa S, Barendse W, et al. A marker derived gene network reveals the regulatory role of PPARGC1A, HNF4G and FOXP3 in intramuscular fat deposition of beef cattle. J Anim Sci. 2014;92:2832–45.
Article
CAS
PubMed
Google Scholar
Chen FF, Xiong Y, Peng Y, Gao Y, Qin J, Chu GY, et al. mir-425-5p inhibits differentiation and proliferation in porcine intramuscular preadipocytes. Int J Mol Sci. 2017;18:2101.
Article
PubMed Central
CAS
Google Scholar
Huang J, Wang S, Feng X, Liu X, Zhao J, Zheng Q, et al. miRNA transcriptome comparison between muscle and adipose tissues indicates potential miRNAs associated with intramuscular fat in Chinese swamp buffalo. Genome. 2019;62:729–38.
Article
CAS
PubMed
Google Scholar
Hakimi P, Yang J, Casadesus G, Massillon D, Tolentino-Silva F, Nye CK, et al. Overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) in skeletal muscle repatterns energy metabolism in the mouse. J Biol Chem. 2007;282:32844–55.
Article
CAS
PubMed
Google Scholar
Muthuraman P. Effect of coculturing on the myogenic and adipogenic marker gene expression. Appl Biochem Biotechnol. 2014;173:571–8.
Article
CAS
PubMed
Google Scholar
Komolka K, Albrecht E, Wimmers K, Michal JJ, Maak S. Molecular heterogeneities of adipose depots-potential effects on adipose-muscle cross-talk in humans, mice and farm animals. J Genomics. 2014;2:31–44.
Article
PubMed
PubMed Central
Google Scholar
Olswang Y, Cohen H, Papo O, Cassuto H, Croniger CM, Hakimi P, et al. A mutation in the peroxisome proliferator-activated receptor γ-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. PNAS. 2002;99:625–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Wang H, Wang Y, Wang HC, Zhang S, Hong JY, et al. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle. PLoS One. 2017;12:e0185961.
Article
PubMed
PubMed Central
CAS
Google Scholar
Qi Y, Zhang X, Wang Y, Wang D, Guo Z, Liu P. The expression of ADAMTS2 and collagen genes in muscle tissue and its relationship with meat quality characters in cattle. J Yunnan Agric Univ (Natural Science). 2014;29:173–8.
CAS
Google Scholar
Albrecht E, Schering L, Liu Y, Komolka K, Kühn C, Wimmers K, et al. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: factors influencing bovine intramuscular adipose tissue development and cellularity. J Anim Sci. 2017;95:2244–54.
CAS
PubMed
Google Scholar
Aspilcueta-Borquis RR, Di Palo R, Araujo Neto FR, Baldi F, de Camargo GMF, de Albuquerque LG, et al. Genetic parameter estimates for buffalo milk yield, milk quality and mozzarella production and Bayesian inference analysis of their relationships. Genet Mol Res. 2010;9:1636–44.
Article
CAS
PubMed
Google Scholar
de Camargo GM, Aspilcueta-Borquis RR, Fortes MR, Porto-Neto R, Cardoso DF, Santos DJ, et al. Prospecting major genes in dairy buffaloes. BMC Genomics. 2015;16:872.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui X, Hou Y, Yang S, Xie Y, Zhang S, Zhang Y, et al. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. BMC Genomics. 2014;15:226.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A. The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci. 2014;97:471–86.
Article
CAS
PubMed
Google Scholar
Beale EG, Hammer RE, Antoine B, Forest C. Disregulated glyceroneogenesis: PCK1 as a candidate diabetes and obesity gene. Trends Endocrinol Metab. 2004;15:129–35.
Article
CAS
PubMed
Google Scholar
Reshef L, Olswang Y, Cassuto H, Blum B, Croniger CM, Kalhan SC, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem. 2003;278:30413–6.
Article
CAS
PubMed
Google Scholar
Forest C, Tordjman J, Glorian M, Duplus E, Chauvet G, Quette J, et al. Fatty acid recycling in adipocytes: a role for glyceroneogenesis and phosphoenolpyruvate carboxykinase. Biochem Soc Trans. 2003;31:1125–9.
Article
CAS
PubMed
Google Scholar
Wang W, Xue W, Jin B, Zhang X, Ma F, Xu X. Candidate gene expression affects intramuscular fat content and fatty acid composition in pigs. J Appl Genet. 2013;54:113–8.
Article
CAS
PubMed
Google Scholar
Franckhauser S, Munoz S, Pujol A, Casellas A, Riu E, Otaegui P, et al. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance. Diabetes. 2002;51:624–30.
Article
CAS
PubMed
Google Scholar
Latorre P, Burgos C, Hidalgo J, Varona L, Carrodeguas JA, López-Buesa P. c.A2456C-substitution in Pck1 changes the enzyme kinetic and functional properties modifying fat distribution in pigs. Sci Rep. 2016;6:19617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren Z, Wang Y, Ren Y, Zhang Z, Gu W, Wu Z, et al. Enhancement of porcine intramuscular fat content by overexpression of the cytosolic form of phosphoenolpyruvate carboxykinase in skeletal muscle. Sci Rep. 2017;7:43746.
Article
PubMed
PubMed Central
Google Scholar
Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab. 2005;1:107–19.
Article
CAS
PubMed
Google Scholar
Chakravarty K, Cassuto H, Reshef L, Hanson RW. Factors that control the tissue-specific transcription of the gene for phosphoenolpyruvate carboxykinase-C. Crit Rev Biochem Mol Biol. 2005;40:129–54.
Article
CAS
PubMed
Google Scholar
Pian L, Xue W, Kang L, Li Z, Nie Y, Du Z, et al. Targeting the IGF1R pathway in breast cancer using antisense lncRNA-mediated promoter cis competition. Mol Ther Nucleic Acids. 2018;12:105–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen L, Zhi Z, Wang L, Zhao YY, Deng M, Liu YH, et al. NSD2 circular RNA promotes metastasis of colorectal cancer by targeting miR-199b-5p-mediated DDR1 and JAG1 signalling. J Pathol. 2019;248:103–15.
Article
CAS
PubMed
Google Scholar
Métivier R, Gallais R, Tiffoche C, Le Péron C, Jurkowska RZ, Carmouche RP, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008;452:45–50.
Article
PubMed
CAS
Google Scholar
Huang J, Zheng Q, Wang S, Wei X, Fen L, Yun M. High-throughput RNA sequencing reveals NDUFC2-AS lncRNA promotes adipogenic differentiation in Chinese buffalo (Bubalus bubalis L). Genes. 2019;10:689.
Article
CAS
PubMed Central
Google Scholar
Krueger F. Trim Galore. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;291:15–21.
Article
CAS
Google Scholar
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc. 2012;7:562–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heatplus: Heatmaps with row and/or column covariates and colored clusters. R package version 2.1.0. http://www.bioconductor.org/packages/2.10/bioc/html/Heatplus.html.
Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2018;4:44–57.
Article
CAS
Google Scholar
Kaur R, Sodhi M, Sharma A, Sharma VL, Verma P, Swamiet SK, et al. Selection of suitable reference genes for normalization of quantitative RT-PCR (RT-qPCR) expression data across twelve tissues of riverine buffaloes (Bubalus bubalis). PLoS One. 2018;13:e0191558.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bonnet M, Bernard L, Bes S, Leroux C. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Animal. 2013;7:1344–53.
Article
CAS
PubMed
Google Scholar
Jiang Q, Sun B, Liu Q, Cai M, Wu R, Wang F, et al. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m6A-YTHDF1-dependent mechanism. FASEB J. 2019;33:2971–81.
Article
CAS
PubMed
Google Scholar
Huang J, Dang R, Torigoe D, Li A, Lei C, Sasaki N, et al. Genetic variation in the GDNF promoter affects its expression and modifies the severity of Hirschsprung’s disease (HSCR) in rats carrying Ednrbsl mutations. Gene. 2016;575:144–8.
Article
CAS
PubMed
Google Scholar
Wei X, Li H, Yang J, Hao D, Dong D, Huang Y, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p. Cell Death Dis. 2017;8:e3153.
Article
CAS
PubMed
PubMed Central
Google Scholar