Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Henikoff S, Greally JM. Epigenetics, cellular memory and gene regulation. Curr Biol. 2016;26(14):R644–8.
Article
CAS
PubMed
Google Scholar
Greally JM. A user's guide to the ambiguous word ‘epigenetics’. Nat Rev Mol Cell Biol. 2018;19(4):207–8.
Article
CAS
PubMed
Google Scholar
Coleman RT, Struhl G. Causal role for inheritance of H3K27me3 in maintaining the OFF state of a Drosophila HOX gene. Science. 2017;356(6333):eaai8236.
Article
PubMed
PubMed Central
CAS
Google Scholar
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 1999;99(3):247–57.
Article
CAS
PubMed
Google Scholar
Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, et al. Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet. 2017;49(4):579–87.
Article
CAS
PubMed
Google Scholar
Lyko F, Maleszka R. Insects as innovative models for functional studies of DNA methylation. Trends Genet. 2011;27(4):127–31.
Article
CAS
PubMed
Google Scholar
Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science. 2008;319(5871):1827–30.
Article
CAS
PubMed
Google Scholar
Yan H, Simola DF, Bonasio R, Liebig J, Berger SL, Reinberg D. Eusocial insects as emerging models for behavioural epigenetics. Nat Rev Genet. 2014;15(10):677–88.
Article
CAS
PubMed
Google Scholar
Daniel FS, Riley JG, Cristina MB, Brittany LE, Claude D, Anandasankar R, et al. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science. 2016;351(6268):aac6633.
Article
CAS
Google Scholar
Meridith TL, Neetu S, Ashley Z, Madhusmita D, Maria L, Chen Y, et al. The histone demethylase Dmel/Kdm4A controls genes required for life span and male-specific sex determination in Drosophila. Gene. 2010;450(1–2):8–17.
Google Scholar
Marija Z, Jason RS, Denise F, Susan BZ, Dalia C. Histone deacetylase dHDAC4 is involved in segmentation of the Drosophila embryo and is regulated by gap and pair-rule genes. Genesis. 2003;35(1):31–8.
Article
CAS
Google Scholar
Clough E, Moon W, Wang S, Smith K, Hazelrigg T. Histone methylation is required for oogenesis in Drosophila. Development. 2007;134(1):157–65.
Article
CAS
PubMed
Google Scholar
Xu S, Felice E. Tip off the HAT- epigenetic control of learning and memory by Drosophila Tip60. Fly (Austin). 2015;9(1):22–8.
Article
Google Scholar
Mohamed AAO, Li M, Liu F, He K, Muhammad Q, Xiao H, et al. The roles of DNA methyltransferases 1 (DNMT1) in regulating sexual dimorphism in the cotton mealybug, Phenacoccus solenopsis. Insects. 2020;11(2):121.
Article
Google Scholar
Lu K, Chen X, Li W, Li Y, Zhang Z, Zhou Q. Insulin-like peptides and DNA tRNA methyltransferases are involved in the nutritional regulation of female reproduction in Nilaparvata Lugens. Gene. 2018;639:96–105.
Article
CAS
PubMed
Google Scholar
Smitha G, Sharath CG, Subba RP. Histone deacetylase 1 suppresses Krüppel homolog 1 gene expression and influences juvenile hormone action in Tribolium castaneum. Proc Natl Acad Sci U S A. 2019;116(36):17759–64.
Article
CAS
Google Scholar
Xiang H, Li X, Dai F, Xu X, Tan A, Chen L, Zhang G, Ding Y, Li Q, Lian J, et al. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics. 2013;14:646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiang H, Zhu J, Chen Q, Dai F, Li X, Li M, et al. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat Biotechnol. 2010;28(5):516–20.
Article
CAS
PubMed
Google Scholar
Xu G, Zhang J, Lyu H, Song Q, Feng Q, Xiang H, et al. DNA methylation mediates BmDeaf1-regulated tissue- and stage-specific expression of BmCHSA-2b in the silkworm, Bombyx mori. Epigenetics Chromatin. 2018;11(1):32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li Z, You L, Yan D, James AA, Huang Y, Tan A. Bombyx mori histone methyltransferase BmAsh2 is essential for silkworm piRNA-mediated sex determination. PLoS Genet. 2018;14(2):e1007245.
Article
PubMed
PubMed Central
CAS
Google Scholar
Suzuki MG, Ito H, Aoki F. Effects of RNAi-mediated knockdown of histone methyltransferases on the sex-specific mRNA expression of Imp in the silkworm Bombyx mori. Int J Mol Sci. 2014;15(4):6772–96.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kawamoto M, Jouraku A, Toyoda A, Yokoi K, Minakuchi Y, Katsuma S, et al. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem Mol Biol. 2019;107:53–62.
Article
CAS
PubMed
Google Scholar
Peng Y, Chu Q, Hu B, Hao L. Biological characteristics and control of wild silkworm in Qinba mountainous area. Mod Agric Technol. 2006;4:74.
Google Scholar
Peng W. Breeding research on traits of Chinese wild silkworm (Bombyx mandaina). Sericulture Newsl. 1987;1:48–53.
Google Scholar
Shen W, Li B, Ji P, Wei Z, Chen Y, Pang G. Adaptability comparison of the Bombyx mandarina moore and Bombyx mori L. to the environment. Sericulture Sci. 2003;29(4):375–9.
Google Scholar
Yin R, Shen Z, Pu G. Research for actuality and progress of Bombyx mandarina leech. Jiangsu Sericulture. 2007;3.
Sakaguchi A, Karachentsev D, Seth-Pasricha M, Druzhinina M, Steward R. Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone methyltransferase. Genetics. 2008;179(1):317–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beck DB, Burton A, Oda H, Ziegler-Birling C, Torres-Padilla M-E, Reinberg D. The role of PR-Set7 in replication licensing depends on Suv4-20h. Genes Dev. 2012;26(23):2580–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuzon CT, Spektor T, Kong X, Congdon LM, Wu S, Schotta G, et al. Concerted activities of distinct H4K20 methyltransferases at DNA double-strand breaks regulate 53BP1 nucleation and NHEJ-directed repair. Cell Rep. 2014;8(2):430–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004;18(11):1251–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gunnar S, Roopsha S, Stefan K, Stephen M, Monika K, Elsa C, et al. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev. 2008;22(15):2048–61.
Article
CAS
Google Scholar
Luo Y, Ma J, Zhang Q, Lin F, Wang Z, Huang L, et al. MBTD1 is associated with Pr-Set7 to stabilize H4K20me1 in mouse oocyte meiotic maturation. Cell Cycle. 2013;12(7):1142–50.
Ashapkin VV, Kutueva LI, Vanyushin BF. Dnmt2 is the most evolutionary conserved and enigmatic cytosine DNA methyltransferase in eukaryotes. Genetika. 2016;52(3):269–82.
CAS
PubMed
Google Scholar
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh C-L, Zhang X, et al. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 2006;311(5759):395–8.
Article
CAS
PubMed
Google Scholar
Legrand C, Tuorto F, Hartmann M, Liebers R, Jacob D, Helm M, et al. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs. Genome Res. 2017;27(9):1589–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol. 2012;19(9):900–5.
Article
CAS
PubMed
Google Scholar
Frank L. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet. 2018;19(2):81–92.
Article
CAS
Google Scholar
Phalke S, Nickel O, Walluscheck D, Hortig F, Onorati MC, Reuter G. Retrotransposon silencing and telomere integrity in somatic cells of Drosophila depends on the cytosine-5 methyltransferase DNMT2. Nat Genet. 2009;41(6):696–702.
Article
CAS
PubMed
Google Scholar
Lin M, Tang L, Reddy MN, James Shen CK. DNA methyltransferase gene dDnmt2 and longevity of Drosophila. J Biol Chem. 2005;280(2):861–4.
Article
CAS
PubMed
Google Scholar
Ehsan B, Saeid M, Sassan A, Mohammad M. Induction of DNA methyltransferase genes in Helicoverpa armigera following injection of pathogenic bacteria modulates expression of antimicrobial peptides and affects bacterial proliferation. J Insect Physiol. 2019;118:103939.
Article
CAS
Google Scholar
Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, et al. Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol. 2018;20(5):535–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haluk L, Yi Z, Beth AW, James BS. dbx mediates neuronal specification and differentiation through cross-repressive, lineage-specific interactions with eve and hb9. Development. 2009;136(19):3257–66.
Article
CAS
Google Scholar
Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, et al. WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res. 2017;45(D1):D264–70.
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5.
Article
CAS
PubMed
Google Scholar
Thurmond J, Goodman JL, Strelets VB, Attrill H, Gramates LS, Marygold SJ, et al. FlyBase 2.0: the next generation. Nucleic Acids Res. 2019;47(D1):D759–65.
Article
CAS
PubMed
Google Scholar
Papatheodorou I, Moreno P, Manning J, Fuentes AM-P, George N, Fexova S, et al. Expression atlas update: from tissues to single cells. Nucleic Acids Res. 2020;48(D1):D77–83.
CAS
PubMed
Google Scholar
Xiang H, Liu X, Li M, Zhu Y, Wang L, Cui Y, et al. The evolutionary road from wild moth to domestic silkworm. Nat Ecol Evol. 2018;2(8):1268–79.
Article
PubMed
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–32.
Article
CAS
PubMed
Google Scholar
Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 2020;48(D1):D87–92.
CAS
PubMed
Google Scholar