Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: genomic selection in dairy cattle: Progress and challenges. J Dairy Sci. 2009;92(2):433–43.
Article
CAS
PubMed
Google Scholar
Wolf F, Almquist J, Hale E. Prepuberal behavior and puberal characteristics of beef bulls on high nutrient allowance. J Anim Sci. 1965;24(3):761–5.
Article
CAS
PubMed
Google Scholar
Takeda K, Kobayashi E, Akagi S, Nishino K, Kaneda M, Watanabe S. Differentially methylated CpG sites in bull spermatozoa revealed by human DNA methylation arrays and bisulfite analysis. J Reprod Dev. 2017;63(3):279–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okada Y, Yamaguchi K. Epigenetic modifications and reprogramming in paternal pronucleus: sperm, preimplantation embryo, and beyond. Cell Mol Life Sci. 2017;74(11):1957–67.
Article
CAS
PubMed
Google Scholar
Siklenka K, Erkek S, Godmann M, Lambrot R, McGraw S, Lafleur C, et al. Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science. 2015;350(6261):aab2006.
Article
PubMed
CAS
Google Scholar
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, et al. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin. 2018;11(1):8.
Article
PubMed
PubMed Central
Google Scholar
Govindaraju A, Uzun A, Robertson L, Atli MO, Kaya A, Topper E, et al. Dynamics of microRNAs in bull spermatozoa. Reprod Biol Endocrinol. 2012;10(1):82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fagerlind M, Stålhammar H, Olsson B, Klinga-Levan K. Expression of miRNAs in bull spermatozoa correlates with fertility rates. Reprod Domest Anim. 2015;50(4):587–94.
Article
CAS
PubMed
Google Scholar
Kutchy NA, Menezes ESB, Chiappetta A, Tan W, Wills RW, Kaya A, et al. Acetylation and methylation of sperm histone 3 lysine 27 (H3K27ac and H3K27me3) are associated with bull fertility. Andrologia. 2018;50(3):e12915.
Article
CAS
Google Scholar
Ugur MR, Kutchy NA, de Menezes EB, Ul-Husna A, Haynes BP, Uzun A, et al. Retained acetylated histone four in bull sperm associated with fertility. Front Vet Sci. 2019;6:223.
Article
PubMed
PubMed Central
Google Scholar
Lambert S, Blondin P, Vigneault C, Labrecque R, Dufort I, Sirard M-A. Spermatozoa DNA methylation patterns differ due to peripubertal age in bulls. Theriogenology. 2018;106(Supplement C):21–9.
Article
PubMed
Google Scholar
Takeda K, Kobayashi E, Nishino K, Imai A, Adachi H, Hoshino Y, et al. Age-related changes in DNA methylation levels at CpG sites in bull spermatozoa and in vitro fertilization-derived blastocyst-stage embryos revealed by combined bisulfite restriction analysis. J Reprod Dev. 2019;65(4):305–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fullston T, Ohlsson Teague EMC, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013;27(10):4226–43.
Article
CAS
PubMed
Google Scholar
Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17:667.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science. 2016;351(6271):391–6.
Article
CAS
PubMed
Google Scholar
Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400.
Article
CAS
PubMed
Google Scholar
Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, et al. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development. 2016;143(4):635–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu WM, Pang RTK, Chiu PCN, Wong BPC, Lao KQ, Lee KF, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109(2):490–4.
Article
CAS
PubMed
Google Scholar
Du Y, Wang X, Wang B, Chen W, He R, Zhang L, et al. Deep sequencing analysis of microRNAs in bovine sperm. Mol Reprod Dev. 2014;81(11):1042–52.
Article
CAS
PubMed
Google Scholar
Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA expression during bovine oocyte maturation and fertilization. Int J Mol Sci. 2016;17(3):396.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andrade G, Meirelles F, Perecin F, da Silveira J. Cellular and extracellular vesicular origins of miRNAs within the bovine ovarian follicle. Reprod Domest Anim. 2017;52(6):1036–45.
Article
CAS
PubMed
Google Scholar
Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005.
Article
PubMed Central
Google Scholar
Orozco-Lucero E, Dufort I, Robert C, Sirard MA. Rapidly cleaving bovine two-cell embryos have better developmental potential and a distinctive mRNA pattern. Mol Reprod Dev. 2014;81(1):31–41.
Article
CAS
PubMed
Google Scholar
Dode MAN, Dufort I, Massicotte L, Sirard MA. Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos. Mol Reprod Dev. 2006;73(3):288–97.
Article
CAS
PubMed
Google Scholar
Lonergan P, Khatir H, Piumi F, Rieger D, Humblot P, Boland MP. Effect of time interval from insemination to first cleavage on the developmental characteristics, sex ratio and pregnancy rate after transfer of bovine embryos. Reproduction. 1999;117(1):159–67.
Article
CAS
Google Scholar
Memili E, First NL. Zygotic and embryonic gene expression in cow: a review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8(1):87–96.
Article
CAS
PubMed
Google Scholar
Kues WA, Sudheer S, Herrmann D, Carnwath JW, Havlicek V, Besenfelder U, et al. Genome-wide expression profiling reveals distinct clusters of transcriptional regulation during bovine preimplantation development in vivo. Proc Natl Acad Sci U S A. 2008;105(50):19768–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tscherner A, Gilchrist G, Smith N, Blondin P, Gillis D, LaMarre J. MicroRNA-34 family expression in bovine gametes and preimplantation embryos. Reprod Biol Endocrinol. 2014;12(1):85.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu C, Blondin P, Vigneault C, Labrecque R, Sirard M-A. The age of the bull influences the transcriptome and epigenome of blastocysts produced by IVF. Theriogenology. 2020;144:122–31.
Article
CAS
PubMed
Google Scholar
Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, et al. Mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rando OJ. Daddy issues: paternal effects on phenotype. Cell. 2012;151(4):702–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, et al. Programming and inheritance of parental DNA methylomes in mammals. Cell. 2014;157(4):979–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, et al. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. 2014;345(6198):1255903.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shea Jeremy M, Serra Ryan W, Carone Benjamin R, Shulha Hennady P, Kucukural A, Ziller Michael J, et al. Genetic and epigenetic variation, but not diet. Shape Sperm Methylome Dev Cell. 2015;35(6):750–8.
CAS
PubMed
Google Scholar
Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci U S A. 2015;112(44):13699–704.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol. 2015;13(1):35.
Article
PubMed
PubMed Central
Google Scholar
Amanai M, Brahmajosyula M, Perry ACF. A restricted role for sperm-borne MicroRNAs in mammalian Fertilization1. Biol Reprod. 2006;75(6):877–84.
Article
CAS
PubMed
Google Scholar
Grandjean V, Fourré S, De Abreu DAF, Derieppe M-A, Remy J-J, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep. 2015;5(1):18193.
Article
CAS
PubMed
PubMed Central
Google Scholar
Short A, Yeshurun S, Powell R, Perreau V, Fox A, Kim J, et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl Psychiatry. 2017;7(5):e1114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2013;30(4):523–30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Breese CR, Ingram RL, Sonntag WE. Influence of age and long-term dietary restriction on plasma insulin-like growth factor-1 (IGF-1), IGF-1 gene expression, and IGF-1 binding proteins. J Gerontol. 1991;46(5):B180–7.
Article
CAS
PubMed
Google Scholar
Greer KA, Hughes LM, Masternak MM. Connecting serum IGF-1, body size, and age in the domestic dog. AGE. 2011;33(3):475–83.
Article
CAS
PubMed
Google Scholar
Bourgon SL, Diel de Amorim M, Miller SP, Montanholi YR. Associations of blood parameters with age, feed efficiency and sampling routine in young beef bulls. Livest Sci. 2017;195:27–37.
Article
Google Scholar
Matsui M, Takahashi Y, Hishinuma M, Kanagawa H. Insulin and insulin-like growth factor-I (IGF-I) stimulate the development of bovine embryos fertilized in vitro. J Vet Med Sci. 1995;57(6):1109–11.
Article
CAS
PubMed
Google Scholar
Sirisathien S, Hernandez-Fonseca HJ, Brackett BG. Influences of epidermal growth factor and insulin-like growth factor-I on bovine blastocyst development in vitro. Anim Reprod Sci. 2003;77(1–2):21–32.
Article
CAS
PubMed
Google Scholar
Tríbulo P, Jumatayeva G, Lehloenya K, Moss JI, Negrón-Pérez VM, Hansen PJ. Effects of sex on response of the bovine preimplantation embryo to insulin-like growth factor 1, activin A, and WNT7A. BMC Dev Biol. 2018;18(1):16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chi MM, Schlein AL, Moley KH. High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology. 2000;141(12):4784–92.
Article
CAS
PubMed
Google Scholar
Moley KH, Bibee K, Wyman A, Eng GS. IGF-1 induced blastocyst apoptosis is p53 dependent. Fertil Steril. 2005;84:S388.
Article
Google Scholar
Velazquez MA, Hermann D, Kues WA, Niemann H. Increased apoptosis in bovine blastocysts exposed to high levels of IGF1 is not associated with downregulation of the IGF1 receptor. Reproduction. 2011;141(1):91–103.
Article
CAS
PubMed
Google Scholar
Liu C, Peng G, Jing N. TGF-β signaling pathway in early mouse development and embryonic stem cells. Acta Biochim Biophys Sin. 2017;50(1):68–73.
Article
CAS
Google Scholar
Roelen BAJ, Goumans M-J, Zwijsen A, Mummery CL. Identification of two distinct functions for TGF-β in early mouse development. Differentiation. 1998;64(1):19–31.
Article
CAS
PubMed
Google Scholar
Moore GD, Ayabe T, Visconti PE, Schultz RM, Kopf GS. Roles of heterotrimeric and monomeric G proteins in sperm-induced activation of mouse eggs. Development. 1994;120(11):3313–23.
CAS
PubMed
Google Scholar
Cui X-S, Li X-Y, Kim N-H. Cdc42 is implicated in polarity during meiotic resumption and blastocyst formation in the mouse. Mol Reprod Dev. 2007;74(6):785–94.
Article
CAS
PubMed
Google Scholar
Clayton L, Hall A, Johnson MH. A role for rho-like GTPases in the polarisation of mouse eight-cell Blastomeres. Dev Biol. 1999;205(2):322–31.
Article
CAS
PubMed
Google Scholar
Mayer JP, Zhang F, DiMarchi RD. Insulin structure and function. Biopolymers. 2007;88(5):687–713.
Article
CAS
PubMed
Google Scholar
Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. J Mol Endocrinol. 2011;47(1):R1–10.
Article
CAS
PubMed
Google Scholar
Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol. 2014;220(2):T1–t23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schultz GA, Hogan A, Watson AJ, Smith RM, Heyner S. Insulin, insulin-like growth factors and glucose transporters: temporal patterns of gene expression in early murine and bovine embryos. Reprod Fertil Dev. 1992;4(4):361–71.
Article
CAS
PubMed
Google Scholar
Keogh K, Kenny DA, Kelly AK, Waters SM. Insulin secretion and signaling in response to dietary restriction and subsequent re-alimentation in cattle. Physiol Genomics. 2015;47(8):344–54.
Article
CAS
PubMed
Google Scholar
Thompson RP, Nilsson E, Skinner MK. Environmental epigenetics and epigenetic inheritance in domestic farm animals. Anim Reprod Sci. 2020;106316.
Ciapa B, Chiri S. Egg activation: upstream of the fertilization calcium signal. Biol Cell. 2000;92(3–4):215–33.
Article
CAS
PubMed
Google Scholar
Malcuit C, Knott JG, He C, Wainwright T, Parys JB, Robl JM, et al. Fertilization and inositol 1,4,5-Trisphosphate (IP3)-induced calcium release in Type-1 inositol 1,4,5-Trisphosphate receptor Down-regulated bovine Eggs1. Biol Reprod. 2005;73(1):2–13.
Article
CAS
PubMed
Google Scholar
Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Ratajczak CK, Moley KH. The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol. 2005;284(2):377–86..
Article
CAS
PubMed
Google Scholar
Zheng W, Gorre N, Shen Y, Noda T, Ogawa W, Lundin E, et al. Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis. EMBO Rep. 2010;11(11):890–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurosaka S, Eckardt S, McLaughlin KJ. Pluripotent lineage definition in bovine embryos by Oct4 transcript Localization1. Biol Reprod. 2004;71(5):1578–82.
Article
CAS
PubMed
Google Scholar
Khan DR, Dubé D, Gall L, Peynot N, Ruffini S, Laffont L, et al. Expression of Pluripotency master regulators during two key developmental transitions: EGA and early lineage specification in the bovine embryo. PLoS One. 2012;7(3):1–12.
CAS
Google Scholar
Vigneault C, Gravel C, Vallée M, McGraw S, Sirard M-A. Unveiling the bovine embryo transcriptome during the maternal-to-embryonic transition. Reproduction. 2009;137(2):245.
Article
CAS
PubMed
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.
Article
CAS
PubMed
PubMed Central
Google Scholar