Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol. 2013;3:1645–87. https://doi.org/10.1002/cphy.c130009.
Article
PubMed
Google Scholar
Bottinelli R, Reggiani C. Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol. 2000;73:195–262. https://doi.org/10.1016/S0079-6107(00)00006-7.
Article
CAS
PubMed
Google Scholar
Terry EE, Zhang X, Hoffmann C, Hughes LD, Lewis SA, Li J, et al. Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. Elife. 2018;7:1. https://doi.org/10.7554/eLife.34613.
Article
Google Scholar
Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954;173:973–6.
Article
CAS
PubMed
Google Scholar
Huxley AF, Niedergerke R. Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature. 1954;173:971–3.
Article
CAS
PubMed
Google Scholar
Spangenburg EE, Booth FW. Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand. 2003;178:413–24.
Article
CAS
PubMed
Google Scholar
Bottinelli R. Functional heterogeneity of mammalian single muscle fibres: do myosin isoforms tell the whole story? Pflugers Arch. 2001;443:6–17.
Article
CAS
PubMed
Google Scholar
Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 2012;7(4):e35273. https://doi.org/10.1371/journal.pone.0035273.
Zierath JR, Hawley JA. Skeletal muscle Fiber type: influence on contractile and metabolic properties. PLoS Biol. 2004;2:e337–48. https://doi.org/10.1371/journal.pbio.0020348.
Article
CAS
Google Scholar
Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, et al. Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep. 2015;16:387–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Askew GN, Tregear RT, Ellington CR. The scaling of myofibrillar actomyosin ATPase activity in apid bee flight muscle in relation to hovering flight energetics. J Exp Biol. 2010;213:1195–206.
Article
CAS
PubMed
Google Scholar
Pette D, Spamer C. Metabolic properties of muscle fibers. Fed Proc. 1986;45:2910–4.
CAS
PubMed
Google Scholar
Komiya Y, Sawano S, Mashima D, Ichitsubo R, Nakamura M, Tatsumi R, et al. Mouse soleus (slow) muscle shows greater intramyocellular lipid droplet accumulation than EDL (fast) muscle: fiber type-specific analysis. J Muscle Res Cell Motil. 2017;38:163–73.
Article
CAS
PubMed
Google Scholar
Prince FP, Hikida RS, Hagerman FC, Staron RS, Allen WH. A morphometric analysis of human muscle fibers with relation to fiber types and adaptations to exercise. J Neurol Sci. 1981;49:165–79.
Article
CAS
PubMed
Google Scholar
Sieck GC, Ferreira LF, Reid MB, Mantilla CB. Mechanical properties of respiratory muscles. Compr Physiol. 2013;3:1533–67. https://doi.org/10.1002/cphy.c130003.
Article
Google Scholar
Talbot J, Maves L. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease. Wiley Interdiscip Rev Dev Biol. 2016;5:518–34. https://doi.org/10.1002/wdev.230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott W, Stevens J. Binder–Macleod SA. Human skeletal muscle Fiber type classifications. Phys Ther. 2001;81:1810–6.
Article
CAS
PubMed
Google Scholar
Jolesz F, Sreter FA. Development, innervation, and activity-pattern induced changes in skeletal muscle. Annu Rev Physiol. 1981;43:531–52.
Article
CAS
PubMed
Google Scholar
Reichmann H, Pette D. A comparative microphotometric study of succinate dehydrogenase activity levels in type I, IIA and IIB Fibres of mammalian and human muscles. Histochemistry. 1982;74:27–41.
Article
CAS
PubMed
Google Scholar
Ciciliot S, Rossi AC, Dyar KA, Blaauw B, Schiaffino S. Muscle type and fiber type specificity in muscle wasting. Int J Biochem Cell Biol. 2013;45:2191–9. https://doi.org/10.1016/J.BIOCEL.2013.05.016.
Article
CAS
PubMed
Google Scholar
Hill C, James RS, Cox VM, Tallis J. The effect of increasing age on the concentric and eccentric contractile properties of isolated mouse soleus and extensor Digitorum Longus muscles. J Gerontol A Biol Sci Med Sci. 2018;73:579–87. https://doi.org/10.1093/gerona/glx243.
Article
CAS
PubMed
Google Scholar
Powers K, Schappacher-Tilp G, Jinha A, Leonard T, Nishikawa K, Herzog W. Titin force is enhanced in actively stretched skeletal muscle. J Exp Biol. 2014;217:3629–36. https://doi.org/10.1242/jeb.105361.
Article
PubMed
Google Scholar
Monroy JA, Powers KL, Pace CM, Uyeno T, Nishikawa KC. Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin. J Exp Biol. 2017;220:828–36.
PubMed
Google Scholar
Kushmerick MJ, Moerland TS, Wiseman RW. Mammalian skeletal muscle fibers distinguished by contents of phosphocreatine, ATP, and pi. Proc Natl Acad Sci. 1992;89:7521–5. https://doi.org/10.1073/pnas.89.16.7521.
Article
CAS
PubMed
PubMed Central
Google Scholar
Phillips SK, Wiseman RW, Woledge RC, Kushmerick MJ. The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle. J Physiol. 1993;462:135–46. https://doi.org/10.1113/jphysiol.1993.sp019547.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sartorius CA, Lu BD, Acakpo-Satchivi L, Jacobsen RP, Byrnes WC, Leinwand LA. Myosin heavy chains IIa and IId are functionally distinct in the mouse. J Cell Biol. 1998;141:943–53. https://doi.org/10.1083/jcb.141.4.943.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hesse B, Fischer MS, Schilling N. Distribution pattern of muscle fiber types in the perivertebral musculature of two different sized species of mice. Anat Rec Adv Integr Anat Evol Biol. 2010;293:446–63. https://doi.org/10.1002/ar.21090.
Article
Google Scholar
Wang Z, Gerstein M, Snyder M. Zhong Wang MG and MS. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansen G, Groenen PJTA, Bächner D, Jap PHK, Coerwinkel M, Oerlemans F, et al. Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nat Genet. 1996;13:316–24.
Article
CAS
PubMed
Google Scholar
Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol. 2013;4:284.
Article
PubMed
PubMed Central
Google Scholar
Szabo EX, Reichert P, Lehniger M-K, Ohmer M, de Francisco AM, Gowik U, et al. Metabolic labeling of RNAs uncovers hidden features and dynamics of the Arabidopsis Transcriptome. Plant Cell. 2020;32:871–87. https://doi.org/10.1105/tpc.19.00214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 2018;19:1–24. https://doi.org/10.1186/s12859-018-2486-6.
Article
CAS
Google Scholar
Koch CM, Chiu SF, Akbarpour M, Bharat A, Ridge KM, Bartom ET, et al. A Beginner’s guide to analysis of RNA sequencing data. Am J Respir Cell Mol Biol. 2018;59:145–57. https://doi.org/10.1165/rcmb.2017-0430TR.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gluck C, Min S, Oyelakin A, Smalley K, Sinha S, Romano RA. RNA-seq based transcriptomic map reveals new insights into mouse salivary gland development and maturation. BMC Genomics. 2016;17:923. https://doi.org/10.1186/s12864-016-3228-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prado LG, Makarenko I, Andresen C, Krüger M, Opitz CA, Linke WA. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol. 2005;126:461–80. https://doi.org/10.1085/jgp.200509364.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ducomps C, Mauriège P, Darche B, Combes S, Lebas F, Doutreloux JP. Effects of jump training on passive mechanical stress and stiffness in rabbit skeletal muscle: role of collagen. Acta Physiol Scand. 2003;178:215–24.
Article
CAS
PubMed
Google Scholar
Muthuchamy M, Grupp IL, Grupp G, O’ Toole BA, Kier AB, Boivin GP, et al. Molecular and physiological effects of overexpressing striated muscle β-tropomyosin in the adult murine heart. J Biol Chem. 1995;270:30593–603. https://doi.org/10.1074/jbc.270.51.30593.
Article
CAS
PubMed
Google Scholar
Knyazeva A, Krutikov A, Golovkin A, Mishanin A, Pavlov G, Smolina N, et al. Time- and ventricular-specific expression profiles of genes encoding Z-disk proteins in pressure overload model of left ventricular hypertrophy. Front Genet. 2019;10.
Luther PK. The vertebrate muscle Z-disc: sarcomere anchor for structure and signalling. J Muscle Res Cell Motil. 2009;30:171–85. https://doi.org/10.1007/s10974-009-9189-6.
Article
PubMed
PubMed Central
Google Scholar
Linke WA. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res. 2008;77:637–48. https://doi.org/10.1016/j.cardiores.2007.03.029.
Article
CAS
PubMed
Google Scholar
Duguez S, Bartoli M, Richard I. Calpain 3: a key regulator of the sarcomere? FEBS J. 2006;273:3427–36. https://doi.org/10.1111/j.1742-4658.2006.05351.x.
Article
CAS
PubMed
Google Scholar
Thornell L-E, Carlsson E, Kugelbergj E, Grove BK, Kugelberg E, BKG M. Myofibrillar M-band structure and composition of physiologically defined rat motor units; 1987.
Book
Google Scholar
Geach TJ, Hirst EMA, Zimmerman LB. Contractile activity is required for Z-disc sarcomere maturation in vivo. Genesis. 2015;53:299–307. https://doi.org/10.1002/dvg.22851.
Ferraro E, Giammarioli AM, Chiandotto S, Spoletini I, Rosano G. Exercise-induced skeletal muscle remodeling and metabolic adaptation: redox signaling and role of autophagy. Antioxid Redox Signal. 2014;21:154–76.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishikawa K, Lindstedt SL, Hessel A, Mishra D. N2A titin: signaling hub and mechanical switch in skeletal muscle. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21113974.
Porter JD, Merriam AP, Leahy P, Gong B, Feuerman J, Cheng G, et al. Temporal gene expression profiling of dystrophin-deficient (mdx) mouse diaphragm identifies conserved and muscle group-specific mechanisms in the pathogenesis of muscular dystrophy. Hum Mol Genet. 2004;13:257–69. https://doi.org/10.1093/hmg/ddh033.
Article
CAS
PubMed
Google Scholar
Lee LA, Karabina A, Broadwell LJ, Leinwand LA. The ancient sarcomeric myosins found in specialized muscles. Skelet Muscle. 2019;9:1–15. https://doi.org/10.1186/s13395-019-0192-3.
Article
Google Scholar
Zhu J, Shi X, Lu H, Xia B, Li Y, Li X, et al. RNA-seq transcriptome analysis of extensor digitorum longus and soleus muscles in large white pigs. Mol Gen Genomics. 2016;291:687–701. https://doi.org/10.1007/s00438-015-1138-z.
Article
CAS
Google Scholar
Alev K. Difference between myosin light and heavy chain isoforms patterns in fast-and slow-twitch skeletal muscle: effect of endurance training: University of Tartu; 2005. www.tyk.ee. Accessed 30 Apr 2020.
Gijnninc P, Gordon M, Wade R, Gahlmann R, Lin C, Hardeman E. Differential control of Tropomyosin mRNA levels during Myogenesis suggests the existence of an lsoform competition-autoregulatory compensation control mechanism. Develop Growth Differ. 1990;138:443–53.
Google Scholar
Jostarndt-Fögen K, Puntschart A, Hoppeler H, Billeter R. Fibre-type specific expression of fast and slow essential myosin light chain mRNAs in trained human skeletal muscles. Acta Physiol Scand. 1998;164:299–308. https://doi.org/10.1046/j.1365-201X.1998.00444.x.
Article
PubMed
Google Scholar
Pieples K, Wieczorek DF. Tropomyosin 3 increases striated muscle isoform diversity. Biochemistry. 2000;39:8291–7. https://doi.org/10.1021/bi000047x.
Article
CAS
PubMed
Google Scholar
Jagatheesan G, Rajan S, Wieczorek DF. Investigations into tropomyosin function using mouse models. J Mol Cell Cardiol. 2010;48:893–8. https://doi.org/10.1016/j.yjmcc.2009.10.003.
Article
CAS
PubMed
Google Scholar
Candau R, Iorga B, Travers F, Barman T, Lionne C. At physiological temperatures the ATPase rates of shortening soleus and psoas myofibrils are similar. Biophys J. 2003;85:3132–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joanne P, Chourbagi O, Hourdé C, Ferry A, Butler-Browne G, Vicart P, et al. Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skelet Muscle. 2013;3:4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turnacioglu KK, Mittal B, Dabiri GA, Sanger JM, Sanger JW. An N-terminal fragment of titin coupled to green fluorescent protein localizes to the Z-bands in living muscle cells: overexpression leads to myofibril disassembly. Mol Biol Cell. 1997;8:705–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luther PK, Squire JM. Muscle Z-band ultrastructure: Titin Z-repeats and Z-band periodicities do not match. J Mol Biol. 2002;319:1157–64.
Article
CAS
PubMed
Google Scholar
Sorimachi H, Freiburg A, Kolmerer B, Ishiura S, Stier G, Gregorio CC, et al. Tissue-specific expression and α-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol. 1997;270:688–95.
Article
CAS
PubMed
Google Scholar
Greaser ML, Pleitner JM. Titin isoform size is not correlated with thin filament length in rat skeletal muscle. Front Physiol. 2014;5:1–9.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, et al. The galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res. 2016;44:W3–10. https://doi.org/10.1093/nar/gkw343.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:1–13. https://doi.org/10.1186/gb-2013-14-4-r36.
Article
CAS
Google Scholar
Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, et al. Software for computing and annotating genomic ranges. PLoS Comput Biol. 2013;9:e1003118. https://doi.org/10.1371/journal.pcbi.1003118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smyth GK, Ritchie ME, Law CW, Alhamdoosh M, Su S, Dong X, et al. RNA-seq analysis is easy as 1–2-3 with limma, Glimma and edgeR. F1000Res. 2018;5. https://doi.org/10.12688/f1000research.9005.3.
Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1–2-3 with limma, Glimma and edgeR. F1000Res. 2016;5:1408. doi:https://doi.org/10.12688/f1000research.9005.2.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. https://doi.org/10.1186/gb-2010-11-10-r106.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
Article
Google Scholar
Yu G, Wang LG, Han Y, He QY. ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol. 2012;16:284–7.
Article
CAS
Google Scholar
Carlson M. org.Mm.eg.db: Genome wide annotation for Mouse. 2018.
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6:e21800. https://doi.org/10.1371/journal.pone.0021800.
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40. https://doi.org/10.1093/bioinformatics/btx364.
Article
CAS
PubMed
PubMed Central
Google Scholar