Spencer GE, Kazmi MH, Syed NI, Lukowiak K. Changes in the activity of a CpG neuron after the reinforcement of an operantly conditioned behavior in Lymnaea. J Neurophysiol. 2002;88(4):1915–23.
Article
PubMed
Google Scholar
Scheibenstock A, Krygier D, Haque Z, Syed N, Lukowiak K. The soma of RPeD1 must be present for long-term memory formation of associative learning in Lymnaea. J Neurophysiol. 2002;88(4):1584–91.
Article
PubMed
Google Scholar
Sunada H, Watanabe T, Hatakeyama D, Lee S, Forest J, Sakakibara M, Ito E, Lukowiak K. Pharmacological effects of cannabinoids on learning and memory in Lymnaea. J Exp Biol. 2017;220(17):3026–38.
Article
PubMed
Google Scholar
Syed N, Bulloch A, Lukowiak K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science. 1990;250(4978):282–5.
Article
CAS
PubMed
Google Scholar
Elliott CJH, Vehovszky Á. Polycyclic neuromodulation of the feeding rhythm of the pond snail Lymnaea stagnalis by the intrinsic octopaminergic interneuron, OC. Brain Res. 2000;887(1):63–9.
Article
CAS
PubMed
Google Scholar
Cheung U, Moghaddasi M, Hall HL, Smith JJB, Buck LT, Woodin MA. Excitatory actions of GABA mediate severe-hypoxia-induced depression of neuronal activity in the pond snail (Lymnaea stagnalis). J Exp Biol. 2006;209(22):4429–35.
Article
CAS
PubMed
Google Scholar
Nejatbakhsh N, Guo CH, Lu TZ, Pei L, Smit AB, Sun HS, van Kesteren RE, Feng ZP. Caltubin, a novel molluscan tubulin-interacting protein, promotes axonal growth and attenuates axonal degeneration of rodent neurons. J Neurosci. 2011;31(43):15231–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
OECD: Test No. 243: Lymnaea stagnalis Reproduction Test; 2016.
Book
Google Scholar
Niyogi S, Brix KV, Grosell M. Effects of chronic waterborne nickel exposure on growth, ion homeostasis, acid-base balance, and nickel uptake in the freshwater pulmonate snail, Lymnaea stagnalis. Aquat Toxicol. 2014;150:36–44.
Article
CAS
PubMed
Google Scholar
Crémazy A, Brix KV, Wood CM. Chronic toxicity of binary mixtures of six metals (Ag, cd, cu, Ni, Pb, and Zn) to the great pond snail Lymnaea stagnalis. Environ Sci Technol. 2018;52(10):5979–88.
Article
PubMed
CAS
Google Scholar
Mazur R, Shubiao W, Szoszkiewicz K, Bedla D, Nowak A, Mazur R, Shubiao W, Szoszkiewicz K, Bedla D, Nowak A. A Lymnaea stagnalis embryo test for toxicity bioindication of acidification and ammonia pollution in water. Water. 2016;8(7):295.
Article
CAS
Google Scholar
Bouétard A, Noirot C, Besnard A-L, Bouchez O, Choisne D, Robe E, Klopp C, Lagadic L, Coutellec M-A. Pyrosequencing-based transcriptomic resources in the pond snail Lymnaea stagnalis, with a focus on genes involved in molecular response to diquat-induced stress. Ecotoxicology. 2012;21(8):2222–34.
Article
PubMed
CAS
Google Scholar
Bouétard A, Besnard A-L, Vassaux D, Lagadic L, Coutellec M-A. Impact of the redox-cycling herbicide diquat on transcript expression and antioxidant enzymatic activities of the freshwater snail Lymnaea stagnalis. Aquat Toxicol. 2013;126:256–65.
Article
PubMed
CAS
Google Scholar
Akande IS, Odetola AA. In: El Ridi R, editor. Epidemiological Survey of Human and Veterinary Schistosomiasis. London: InTech; 2013.
Wang T, Zhao M, Liang D, Bose U, Kaur S, McManus DP, Cummins SF. Changes in the neuropeptide content of Biomphalaria ganglia nervous system following Schistosoma infection. Parasit Vectors. 2017;10(1):275.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, Oliveira G, Raghavan N, Shedlock A, do Amaral LR, et al. Whole genome analysis of a schistosomiasis-transmitting freshwater snail. Nat Commun. 2017;8:15451.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catterall WA, Dib-Hajj S, Meisler MH, Pietrobon D. Inherited neuronal ion Channelopathies: new windows on complex neurological diseases. J Neurosci. 2008;28(46):11768–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hubner CA, Jentsch TJ. Ion channel diseases. Hum Mol Genet. 2002;11(20):2435–45.
Article
PubMed
Google Scholar
Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988;25(3):729–49.
Article
CAS
PubMed
Google Scholar
Coetzee WA, Amarillo Y, Chiu J, Chow A, Ozaita A, Pountney D, Saganich M, Vega-Saenz de Miera E, Rudy B. Molecular diversity of K+ channels. Ann NY Acad Sci. 1999;868:233–85.
Maljevic S, Lerche H. Potassium channels: a review of broadening therapeutic possibilities for neurological diseases. J Neurol. 2013;260(9):2201–11.
Article
CAS
PubMed
Google Scholar
De Waard M, Gurnett CA, Campbell KP. In: Narahashi T, editor. Structural and functional diversity of voltage-activated calcium channels. New York: Plenum Press; 1996. p. 41–87.
Google Scholar
Goldin AL. Diversity of mammalian voltage-gated sodium channels. Ann N Y Acad Sci. 1999;868:38–50.
Article
CAS
PubMed
Google Scholar
Betz H. Ligand-gated ion channels in the brain: the amino acid receptor superfamily. Neuron. 1990;5(4):383–92.
Article
CAS
PubMed
Google Scholar
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sigel E, Steinmann ME. Structure, function, and modulation of GABAA receptors. J Biol Chem. 2012;287(48):40224–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu J, Lukas RJ. Naturally-expressed nicotinic acetylcholine receptor subtypes. Biochem Pharmacol. 2011;82(8):800–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38(8):1083–152.
Article
CAS
PubMed
Google Scholar
Burnstock G, Kennedy C. P2X receptors in health and disease. Adv Pharmacol. 2011;61:333–72.
Baumann A, Grupe A, Ackermann A, Pongs O. Structure of the voltage-dependent potassium channel is highly conserved from Drosophila to vertebrate central nervous systems. EMBO J. 1988;7(8):2457–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salkoff L, Baker K, Butler A, Covarrubias M, Pak MD, Wei A. An essential ‘set’ of K+ channels conserved in flies, mice and humans. Trends Neurosci. 1992;15(5):161–6.
Article
CAS
PubMed
Google Scholar
Fleishman SJ, Yifrach O, Ben-Tal N. An evolutionarily conserved network of amino acids mediates gating in voltage-dependent potassium channels. J Mol Biol. 2004;340(2):307–18.
Article
CAS
PubMed
Google Scholar
Harvey RJ, Vreugdenhil E, Barnard EA, Darlison MG. Cloning of genomic and cDNA sequences encoding an invertebrate γ-aminobutyric acid a receptor subunit. Biochem Soc Trans. 1990;18(3):438–9.
Article
CAS
PubMed
Google Scholar
Hutton ML, Harvey RJ, Barnard EA, Darlison MG. Cloning of a cDNA that encodes an invertebrate glutamate subunit. FEBS J. 1991;292(1):111–4.
CAS
Google Scholar
Stühmer T, Amar M, Harvey RJ, Bermudez I, Van Minnen J, Darlison MG, Minnen JV, Darlison MG. Structure and pharmacological properties of a molluscan glutamate-gated cation channel and its likely role in feeding behavior. J Neurosci. 1996;16(9):2869–80.
Article
PubMed
PubMed Central
Google Scholar
Ha TJ, Kohn AB, Bobkova YV, Moroz LL. Molecular characterization of NMDA-like receptors in Aplysia and Lymnaea: relevance to memory mechanisms. Biol Bull. 2006;210(3):255–70.
Article
CAS
PubMed
Google Scholar
Smit AB, Syed NI, Schaap D, Van Minnen J, Klumperman J, Kits KS, Lodder H, Van Der Schors RC, Van Elk R, Sorgedrager B, et al. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature. 2001;411(6835):261–8.
Article
CAS
PubMed
Google Scholar
Spafford JD, Chen L, Feng ZP, Smit AB, Zamponi GW. Expression and modulation of an invertebrate presynaptic calcium channel α1 subunit homolog. J Biol Chem. 2003;278(23):21178–87.
Article
CAS
PubMed
Google Scholar
Spafford JD, Munno DW, Van Nierop P, Feng ZP, Jarvis SE, Gallin WJ, Smit AB, Zamponi GW, Syed NI. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J Biol Chem. 2003;278(6):4258–67.
Article
CAS
PubMed
Google Scholar
Spafford JD, Dunn T, Smit AB, Syed NI, Zamponi GW. In vitro characterization of L-type calcium channels and their contribution to firing behavior in invertebrate respiratory neurons. J Neurophysiol. 2006;95(1):42–52.
Article
CAS
PubMed
Google Scholar
Senatore A, Spafford JD. Transient and big are key features of an invertebrate T-type channel (LCav3) from the central nervous system of Lymnaea stagnalis. J Biol Chem. 2010;285(10):7447–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bavan S, Straub VA, Webb TE, Ennion SJ. Cloning and Characterization of a P2X Receptor Expressed in the Central Nervous System of Lymnaea stagnalis. PLoS One. 2012;7(11):e50487.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams DJ, Smith SJ, Thompson SH. Ionic currents in Molluscan Soma. Annu Rev Neurosci. 1980;3(1):141–67.
Article
CAS
PubMed
Google Scholar
Moroz LL, Edwards JR, Puthanveettil SV, Kohn AB, Ha T, Heyland A, Knudsen B, Sahni A, Yu F, Liu L, et al. Neuronal transcriptome of Aplysia: neuronal compartments and circuitry. Cell. 2006;127(7):1453–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kenny NJ, Truchado-García M, Grande C. Deep, multi-stage transcriptome of the schistosomiasis vector Biomphalaria glabrata provides platform for understanding molluscan disease-related pathways. BMC Infect Dis. 2016;16(1):618.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gauss R, Seifert R, Kaupp UB. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature. 1998;395:583–7.
Article
Google Scholar
Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, Tanasa B, Hogan PG, Lewis RS, Daly M, Rao A. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature. 2006;441(7090):179–85.
Article
CAS
PubMed
Google Scholar
Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG. Orai1 is an essential pore subunit of the CRAC channel. Nature. 2006;443(7108):230–3.
Article
CAS
PubMed
Google Scholar
Feng ZP, Zhang Z, van Kesteren RE, Straub VA, van Nierop P, Jin K, Nejatbakhsh N, Goldberg JI, Spencer GE, Yeoman MS, et al. Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis. BMC Genomics. 2009;10:451.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sadamoto H, Takahashi H, Okada T, Kenmoku H, Toyota M, Asakawa Y. de novo sequencing and transcriptome analysis of the central nervous system of mollusc Lymnaea stagnalis by deep RNA sequencing. PLoS One. 2012;7(8):e42546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coutellec MA, et al. Reference genome of the freshwater snail Lymnaea stagnalis, a multidisciplinary invertebrate model: overall rationale of the STAGING project. In: Pearls of wisdom: synergising leadership and expertise in molluscan genomics, a Theo Murphy international scientific meeting by the Royal Society. Newport Pagnell: The Royal Society, Chicheley Hall; 2019 https://royalsociety.org/science-events-and-lectures/2019/09/pearls-of-wisdom/.
Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, Kellis M, Lindblad-Toh K, Lander ES. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A. 2007;104(49):19428–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marin R, Cortez D, Lamanna F, Pradeepa MM, Leushkin E, Julien P, Liechti A, Halbert J, Brüning T, Mössinger K, et al. Convergent origination of a Drosophila−like dosage compensation mechanism in a reptile lineage. Genome Res. 2017;27(12):1974–87.
Modzelewska K, Boer Elena F, Mosbruger Timothy L, Picard D, Anderson D, Miles Rodney R, Kroll M, Oslund W, Pysher Theodore J, Schiffman Joshua D, et al. MEK inhibitors reverse growth of Embryonal brain tumors derived from Oligoneural precursor cells. Cell Rep. 2016;17(5):1255–64.
Article
CAS
PubMed
Google Scholar
Kaletsky R, Lakhina V, Arey R, Williams A, Landis J, Ashraf J, Murphy CT. The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature. 2016;529(7584):92–6.
Article
CAS
PubMed
Google Scholar
Straub V, Staras K, Kemenes G, Benjamin PR. Endogenous and network properties of Lymnaea feeding central pattern generator interneurons. J Neurophysiol. 2002;88(4):1569–83.
Article
PubMed
Google Scholar
Massobrio P, Tessadori J, Chiappalone M, Ghirardi M. In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using multielectrode arrays. Neural Plasticity. 2015;2015:1–18.
Article
Google Scholar
Dong N, Senzel A, Li K, Lu TZ, Guo CH, Aleksic M, Feng ZP. MEN1 tumor suppressor gene is required for long-term memory formation in an aversive operant conditioning model of Lymnaea stagnalis. Neuroscience. 2018;379:22–31.
Article
CAS
PubMed
Google Scholar
Winlow W, Syed NI. The respiratory central pattern generator of Lymnaea. Acta Biol Hung. 1992;43:399–408.
CAS
PubMed
Google Scholar
Silverman-Gavrila LB, Lu TZ, Prashad RC, Nejatbakhsh N, Charlton MP, Feng ZP. Neural phosphoproteomics of a chronic hypoxia model-Lymnaea stagnalis. Neuroscience. 2009;161(2):621–34.
Article
CAS
PubMed
Google Scholar
Rosenegger D, Lukowiak K. The participation of NMDA receptors, PKC, and MAPK in the formation of memory following operant conditioning in Lymnaea. Mol Brain. 2010;3(1):1–10.
Article
CAS
Google Scholar
Lu TZ, Kostelecki W, Sun CLF, Dong N, Pérez Velázquez JL, Feng ZP. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron. Eur J Neurosci. 2016;44(12):3011–22.
Article
CAS
PubMed
Google Scholar
Dong N, Feng ZP. Inverse relationship between basal pacemaker neuron activity and aversive long-term memory formation in Lymnaea stagnalis. Front Cell Neurosci. 2017;10(297):297.
PubMed
PubMed Central
Google Scholar
Adema CM, Van Deutekom-Mulder EC, Van Der Knaap WPW, Sminia T. Schistosomicidal activities of Lymnaea stagnalis haemocytes: the role of oxygen radicals. Parasitology. 1994;109(04):479.
Article
PubMed
Google Scholar
Cho H, Davis J, Li X, Smith KS, Battle A, Montgomery SB. High-resolution Transcriptome analysis with long-read RNA sequencing. PLoS One. 2014;9(9):e108095.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nakasugi K, Crowhurst R, Bally J, Waterhouse P. Combining Transcriptome assemblies from multiple de novo assemblers in the Allo-Tetraploid plant Nicotiana benthamiana. PLoS One. 2014;9(3):e91776.
Article
PubMed
PubMed Central
CAS
Google Scholar
Venturini L, Caim S, Kaithakottil GG, Mapleson DL, Swarbreck D. Leveraging multiple transcriptome assembly methods for improved gene structure annotation. GigaScience. 2018;7(8):giy093.
Article
PubMed Central
CAS
Google Scholar
Jiménez CR, Spijker S, De Schipper S, Lodder JC, Janse CK, Geraerts WPM, Van Minnen J, Syed NI, Burlingame AL, Smit AB, et al. Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J Neurosci. 2006;26(2):518–29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brezden BL, Yeoman MS, Gardner DR, Benjamin PR. FMRFamide-Activated Ca2+ Channels in Lymnaea Heart Cells Are Modulated by “SEEPLY,” a Neuropeptide Encoded on the Same Gene. J Neurophysiol. 1999;81(4):1818–26.
Article
CAS
PubMed
Google Scholar
Zhang G, Vilim FS, Liu D-D, Romanova EV, Yu K, Yuan W-D, Xiao H, Hummon AB, Chen T-T, Alexeeva V, et al. Discovery of leucokinin-like neuropeptides that modulate a specific parameter of feeding motor programs in the molluscan model, Aplysia. J Biol Chem. 2017;292(46):18775–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joris M, Koene JM. Neuro-endocrine control of reproduction in hermaphroditic freshwater snails: mechanisms and evolution. Front Behav Neurosci. 2010;4:167.
Google Scholar
Morishita F, Furukawa Y, Matsushima O, Minakata H. Regulatory actions of neuropeptides and peptide hormones on the reproduction of molluscsThe present review is one of a series of occasional review articles that have been invited by the editors and will feature the broad range of disciplines and expertise represented in our editorial advisory board. Can J Zool. 2010;88(9):825–45.
Article
CAS
Google Scholar
Senatore A, Edirisinghe N, Katz PS. Deep mRNA sequencing of the Tritonia diomedea brain transcriptome provides access to gene homologues for neuronal excitability, synaptic transmission and peptidergic signalling. PLoS One. 2015;10(2):e0118321.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mansour TA, Habib MR, Rodríguez LCV, Vázquez AH, Alers JM, Ghezzi A, Croll RP, Brown CT, Miller MW. Central nervous system transcriptome of Biomphalaria alexandrina, an intermediate host for schistosomiasis. BMC Res Notes. 2017;10(1):729.
Article
PubMed
PubMed Central
Google Scholar
Lu TZ, Feng Z-P. A sodium leak current regulates pacemaker activity of adult central pattern generator neurons in Lymnaea Stagnalis. PLoS One. 2011;6(4):e18745.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dawson TF, Boone AN, Senatore A, Piticaru J, Thiyagalingam S, Jackson D, Davison A, Spafford JD. Gene splicing of an invertebrate beta subunit (LCavβ) in the N-terminal and HOOK domains and its regulation of LCav1 and LCav2 calcium channels. PLoS One. 2014;9(4):e92941.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dong N, Lee DWK, Sun H-s, Feng Z-P. Dopamine-mediated calcium channel regulation in synaptic suppression in L. stagnalis interneurons. Channels. 2018;12(1):153–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gleichmann M, Mattson MP. Neuronal calcium homeostasis and Dysregulation. Antioxid Redox Signal. 2011;14(7):1261–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu B, Su Y, Das S, Liu J, Xia J, Ren D. The Neuronal Channel NALCN contributes resting sodium permeability and is required for Normal respiratory rhythm. Cell. 2007;129(2):371–83.
Article
CAS
PubMed
Google Scholar
Moose DL, Haase SJ, Aldrich BT, Lear BC. The narrow abdomen Ion Channel complex is highly stable and persists from development into adult stages to promote behavioral rhythmicity. Front Cell Neurosci. 2017;11:159.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xie L, Gao S, Alcaire Salvador M, Aoyagi K, Wang Y, Griffin Jennifer K, Stagljar I, Nagamatsu S, Zhen M. NLF-1 delivers a sodium Leak Channel to regulate neuronal excitability and modulate rhythmic locomotion. Neuron. 2013;77(6):1069–82.
Article
CAS
PubMed
Google Scholar
Himmel NJ, Cox DN. Transient receptor potential channels: current perspectives on evolution, structure, function and nomenclature. Proc R Soc B Biol Sci. 2020;287(1933):20201309.
Article
Google Scholar
Baylis HA, Goyal K. TRPM channel function in Caenorhabditis elegans. Biochem Soc Trans. 2007;35(1):129–32.
Article
CAS
PubMed
Google Scholar
Koike C, Numata T, Ueda H, Mori Y, Furukawa T. TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium. 2010;48(2–3):95–101.
Article
CAS
PubMed
Google Scholar
Jiao Y, Cao Y, Zheng Z, Liu M, Guo X. Massive expansion and diversity of nicotinic acetylcholine receptors in lophotrochozoans. BMC Genomics. 2019;20(1):937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Nierop P, Bertrand S, Munno DW, Gouwenberg Y, Van Minnen J, Spafford JD, Syed NI, Bertrand D, Smit AB. Identification and functional expression of a family of nicotinic acetylcholine receptor subunits in the central nervous system of the mollusc Lymnaea stagnalis. J Biol Chem. 2006;281(3):1680–91.
Article
PubMed
CAS
Google Scholar
Rolls MM, Jegla TJ. Neuronal polarity: an evolutionary perspective. J Exp Biol. 2015;218(4):572–80.
Article
PubMed
PubMed Central
Google Scholar
Seebacher F. The evolution of metabolic regulation in animals. Comp Biochem Physiol B: Biochem Mol Biol. 2018;224:195–203.
Article
CAS
Google Scholar
Fadda M, Hasakiogullari I, Temmerman L, Beets I, Zels S, Schoofs L. Regulation of feeding and metabolism by neuropeptide F and short neuropeptide F in invertebrates. Front Endocrinol (Lausanne). 2019;10:64.
Article
Google Scholar
Altenhoff AM, Studer RA, Robinson-Rechavi M, Dessimoz C. Resolving the Ortholog conjecture: Orthologs tend to be weakly, but significantly, more similar in function than Paralogs. PLoS Comput Biol. 2012;8(5):e1002514.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen X, Zhang J. The Ortholog conjecture is untestable by the current gene ontology but is supported by RNA sequencing data. PLoS Comput Biol. 2012;8(11):e1002784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rogozin IB, Managadze D, Shabalina SA, Koonin EV. Gene family level comparative analysis of gene expression in mammals validates the Ortholog conjecture. Genome Biol Evol. 2014;6(4):754–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kasahara M, Suzuki T, Pasquier LD. On the origins of the adaptive immune system: novel insights from invertebrates and cold-blooded vertebrates. Trends Immunol. 2004;25(2):105–11.
Article
CAS
PubMed
Google Scholar
Hughes AL. Protein phylogenies provide evidence of a radical discontinuity between arthropod and vertebrate immune systems. Immunogenetics. 1998;47(4):283–96.
Article
CAS
PubMed
Google Scholar
Bosch M, Hayashi Y. Structural plasticity of dendritic spines. Curr Opin Neurobiol. 2012;22(3):383–8.
Article
CAS
PubMed
Google Scholar
Fredriksson R, Schiöth HB. The repertoire of G-protein–coupled receptors in fully sequenced genomes. Mol Pharmacol. 2005;67(5):1414–25.
Article
CAS
PubMed
Google Scholar
Krishnan A, Mustafa A, Almén MS, Fredriksson R, Williams MJ, Schiöth HB. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families. Mol Phylogenet Evol. 2015;91:27–40.
Article
CAS
PubMed
Google Scholar
Winlow W, Benjamin PR. Neuronal mapping of the brain of the pond snail, Lymnaea stagnalis (L.). In: Salanki J, editor. Neurobiology of Invertebrates, Gastropoda Brain, vol. 41. Budapest: Akademiai Kiado; 1976. p. 59.
Google Scholar
Hui K, Fei GH, Saab BJ, Su J, Roder JC, Feng ZP. Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth. Development. 2007;134(24):4479–89.
Article
CAS
PubMed
Google Scholar
Natsidis P, Schiffer PH, Salvador-Martínez I, Telford MJ. Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers. Sci Rep. 2019;9(1):19477.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alberti A, Poulain J, Engelen S, Labadie K, Romac S, Ferrera I, Albini G, Aury J-M, Belser C, Bertrand A, et al. Viral to metazoan marine plankton nucleotide sequences from the Tara oceans expedition. Scientific Data. 2017;4(1):170093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28(24):3211–7.
Article
CAS
PubMed
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data, vol. 1; 2010. p. 1–1.
Google Scholar
Song L, Florea L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience. 2015;4(1):1–8.
Article
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
Article
CAS
PubMed
Google Scholar
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shao M, Kingsford C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat Biotechnol. 2017;35(12):1167–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu R, Dickerson J. Strawberry: fast and accurate genome-guided transcript reconstruction and quantification from RNA-Seq. PLoS Comput Biol. 2017;13(11):e1005851.
Article
PubMed
PubMed Central
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert D. EvidentialGene: mRNA Transcript Assembly Software; 2013.
Google Scholar
Visser EA, Wegrzyn JL, Steenkmap ET, Myburg AA, Naidoo S. Combined de novo and genome guided assembly and annotation of the Pinus patula juvenile shoot transcriptome. BMC Genomics. 2015;16(1):1057.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mamrot J, Legaie R, Ellery SJ, Wilson T, Seemann T, Powell DR, Gardner DK, Walker DW, Temple-Smith P, Papenfuss AT, et al. De novo transcriptome assembly for the spiny mouse (Acomys cahirinus). Sci Rep. 2017;7(1):8996.
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31(19):3210–2.
Article
PubMed
CAS
Google Scholar
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.
Article
PubMed
PubMed Central
CAS
Google Scholar
MacManes MD, Eisen MB. Characterization of the transcriptome, nucleotide sequence polymorphism, and natural selection in the desert adapted mouse Peromyscus eremicus. PeerJ. 2014;2:e642.
Article
PubMed
PubMed Central
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reimand J, Arak T, Adler P, Kolberg L, Reisberg S, Peterson H, Vilo J. g:Profiler—a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 2016;44(W1):W83–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205–17.
Article
CAS
PubMed
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics. 1992;8(3):275–82.
Article
CAS
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2016;8(1):28–36.
Article
Google Scholar
Fernandez NF, Gundersen GW, Rahman A, Grimes ML, Rikova K, Hornbeck P, Ma’ayan A. Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Scientific Data. 2017;4(1):170151.
Article
PubMed
PubMed Central
Google Scholar