van Heusden GP, Griffiths DJ, Ford JC, Chin AWTF, Schrader PA, Carr AM, Steensma HY. The 14-3-3 proteins encoded by the BMHl and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem. 1995;229(1):45–53.
Article
PubMed
Google Scholar
Boston P, Jackson P. Purification and properties of a brain-specific protein, human 14-3-3 protein. Biochem Soc T. 1980;8(5):617.
Article
CAS
Google Scholar
Rosenquist M, Alsterfjord M, Larsson C, Sommarin M. Data mining the Arabidopsis genome reveals fifteen 14-3-3 genes. Expression is demonstrated for two out of five novel genes. Plant Physiol. 2001;127(1):142–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu G, DeLisle AJ, Nick CDV, Ferl RJ. Brain proteins in plants: An Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci U S A. 1992;89(23):11490–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeLille JM, Sehnke PC, Ferl RJ. The Arabidopsis 14-3-3 family of signaling regulators. Plant Physiol. 2001;126:35–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell. 1997;91(7):961–71.
Article
CAS
PubMed
Google Scholar
Johnson C, Crowther S, Stafford MJ, Campbell DG, Toth R, MacKintosh C. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem J. 2010;427(1):69–78.
Article
CAS
PubMed
Google Scholar
Ishida S, Fukazawa J, Yuasa T, Takahashi Y. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell. 2004;16(10):2641–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sumioka A, Nagaishi S, Yoshida T, Lin A, Miura M, Suzuki T. Role of 14-3-3γ in FE65-dependent gene transactivation mediated by the amyloid β-protein precursor cytoplasmic fragment. J Biol Chem. 2005;280(51):42364–74.
Article
CAS
PubMed
Google Scholar
Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M, Ferl RJ, Sommarin M, Larsson C. Plasma membrane H(+)-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H(+)-ATPase interaction. Plant Cell Physiol. 2004;45(9):1202–10.
Article
CAS
PubMed
Google Scholar
Purwestri YA, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K. The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol. 2009;50(3):429–38.
Article
CAS
PubMed
Google Scholar
Huang X, Zhang Q, Jiang Y, Yang C, Wang Q, Li L. Shade-induced nuclear localization of PIF7 is regulated by phosphorylation and 14-3-3 proteins in Arabidopsis. Elife. 2018;7:e31636.
Article
PubMed
PubMed Central
Google Scholar
Toroser D, Athwal GS, Huber SC. Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS Lett. 1998;1(435):114.
Google Scholar
Yang Z, Wang C, Xue Y, Liu X, Chen S, Song C, Yang Y, Guo Y. Calcium-activated 14–3-3 proteins as a molecular switch in salt stress tolerance. Nat Commun. 2019;10(1):1199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hermeking H, Benzinger A. 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol. 2006;16(3):183–92.
Article
CAS
PubMed
Google Scholar
Wang H, Yang C, Zhang C, Wang N, Lu D, Wang J, Zhang S, Wang Z, Ma H, Wang X. Dual role of BKI1 and 14-3-3s in brassinosteroid signaling to link receptor with transcription factors. Dev Cell. 2011;21(5):825–34.
Article
CAS
PubMed
Google Scholar
Yasuda S, Sato T, Maekawa S, Aoyama S, Fukao Y, Yamaguchi J. Phosphorylation of Arabidopsis ubiquitin ligase ATL31 is critical for plant carbon/nitrogen nutrient balance response and controls the stability of 14-3-3 proteins. J Biol Chem. 2014;289(22):15179–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoonheim PJ, Veiga H, Da Costa PD, Friso G, van Wijk KJ, de Boer AH. A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach. Plant Physiol. 2007;143(2):670–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Igarashi D, Ishida S, Fukazawa J, Takahashi Y. 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell. 2001;13(11):2483–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schoonheim PJ, Costa Pereira DD, De Boer AH. Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant Cell Environ. 2009;32(5):439–47.
Article
CAS
PubMed
Google Scholar
Gampala SS, Kim T, He J, Tang W, Deng Z, Bai M, Guan S, Lalonde S, Sun Y, Gendron JM, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev Cell. 2007;13(2):177–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mayfield JD, Folta KM, Paul A, Ferl RJ. The 14-3-3 proteins μ and υ influence transition to flowering and early phytochrome response. Plant Physiol. 2007;145(4):1692–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E. Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell. 2001;13(12):2687–702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci U S A. 2006;103(16):6398–403.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotoda N, Hayashi H, Suzuki M, Igarashi M, Hatsuyama Y, Kidou S, Igasaki T, Nishiguchi M, Yano K, Shimizu T, et al. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus × domestica Borkh.). Plant Cell Physiol. 2010;51(4):561–75.
Article
CAS
PubMed
Google Scholar
Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K. Hd3a protein is a mobile flowering signal in rice. Science. 2007;316(5827):1033–6.
Article
CAS
PubMed
Google Scholar
Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science. 2007;316(5827):1030–3.
Article
CAS
PubMed
Google Scholar
Tamaki S, Tsuji H, Matsumoto A, Fujita A, Shimatani Z, Terada R, Sakamoto T, Kurata T, Shimamoto K. FT-like proteins induce transposon silencing in the shoot apex during floral induction in rice. Proc Natl Acad Sci. 2015;112(8):E901–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kotoda N, Iwanami H, Takahashi S, Abe K. Antisense expression of MdTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hortic Sci. 2006;131(1):74–81.
Article
CAS
Google Scholar
Flachowsky H, Szankowski I, Waidmann S, Peil A, Trankner C, Hanke MV. The MdTFL1 gene of apple (Malus × domestica Borkh.) reduces vegetative growth and generation time. Tree Physiol. 2012;32(10):1288–301.
Article
CAS
PubMed
Google Scholar
Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;5296(275):80–3.
Article
Google Scholar
Conti L, Bradley D. TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell. 2007;19(3):767–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D. Integration of spatial and temporal information during floral induction in Arabidopsis. Science. 2005;309(5737):1056–9.
Article
CAS
PubMed
Google Scholar
Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science. 2005;309(5737):1052–6.
Article
CAS
PubMed
Google Scholar
Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476(7360):332–5.
Article
CAS
PubMed
Google Scholar
Kaneko-Suzuki M, Kurihara-Ishikawa R, Okushita-Terakawa C, Kojima C, Nagano-Fujiwara M, Ohki I, Tsuji H, Shimamoto K, Taoka K. TFL1-like proteins in rice antagonize rice FT-like protein in inflorescence development by competition for complex formation with 14-3-3 and FD. Plant Cell Physiol. 2018;59(3):458–68.
Article
CAS
PubMed
Google Scholar
Tsuji H, Nakamura H, Taoka K, Shimamoto K. Functional diversification of FD transcription factors in rice, components of florigen activation complexes. Plant Cell Physiol. 2013;54(3):385–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing L, Zhang D, Qi S, Chen X, An N, Li Y, Zhao C, Han M, Zhao J. Transcription profiles reveal the regulatory mechanisms of spur bud changes and flower induction in response to shoot bending in apple (Malus domestica Borkh.). Plant Mol Biol. 2019;99(1–2):45–66.
Article
CAS
PubMed
Google Scholar
Zuo X, Zhang D, Wang S, Xing L, Li Y, Fan S, Zhang L, Ma J, Zhao C, Shah K, et al. Expression of genes in the potential regulatory pathways controlling alternate bearing in ‘Fuji’ (Malus domestica Borkh.) apple trees during flower induction. Plant Physiol Bioch. 2018;132:579–89.
Article
CAS
Google Scholar
Fan S, Zhang D, Gao C, Wan S, Lei C, Wang J, Zuo X, Dong F, Li Y, Shah K, et al. Mediation of flower induction by gibberellin and its inhibitor paclobutrazol: mRNA and miRNA integration comprises complex regulatory cross-talk in apple. Plant Cell Physiol. 2018;59:2288–307.
CAS
PubMed
Google Scholar
Chen F, Li Q, Sun L, He Z. The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Res. 2006;13(2):53–63.
Article
CAS
PubMed
Google Scholar
Li X, Dhaubhadel S. Soybean 14-3-3 gene family: identification and molecular characterization. Planta. 2011;233(3):569–82.
Article
CAS
PubMed
Google Scholar
Xu W, Shi W, Jia L, Liang J, Zhang J. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play distinct roles in plant adaption to low phosphorus stress. Plant Cell Environ. 2012;35(8):1393–406.
Article
CAS
PubMed
Google Scholar
Tian F, Wang T, Xie Y, Zhang J, Hu J. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in populus. PLoS One. 2015;10(4):e123225.
Article
Google Scholar
Cannon SB, Mitra A, Baumgarten A, Young ND, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4(1):10.
Article
PubMed
PubMed Central
Google Scholar
Sehnke PC, Henry R, Cline K, Ferl RJ. Interaction of a plant 14-3-3 protein with the signal peptide of a thylakoid-targeted chloroplast precursor protein and the presence of 14-3-3 isoforms in the chloroplast stroma. Plant Physiol. 2000;1(122):235–41.
Article
Google Scholar
Li Y, Zhang D, An N, Fan S, Zuo X, Zhang X, Zhang L, Gao C, Han M, Xing L. Transcriptomic analysis reveals the regulatory module of apple (Malus × domestica) floral transition in response to 6-BA. BMC Plant Biol. 2019;19(1):93.
Article
PubMed
PubMed Central
Google Scholar
Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K. Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus × domestica Borkh.). Plant Cell Physiol. 2009;50(2):394–412.
Article
CAS
PubMed
Google Scholar
Yao Y, Du Y, Jiang L, Liu JY. Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa. J Biochem Mol Biol. 2007;40(3):349–57.
CAS
PubMed
Google Scholar
Ferl RJ, Lu G, Bowen BW. Evolutionary implications of the family of 14-3-3 brain protein homologs in Arabidopsis thaliana. Genetica. 1994;92(2):129–38.
Article
CAS
PubMed
Google Scholar
Pallucca R, Visconti S, Camoni L, Cesareni G, Melino S, Panni S, Torreri P, Aducci P. Specificity of epsilon and non-epsilon isoforms of Arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. PLoS One. 2014;9(6):e90764.
Article
PubMed
PubMed Central
Google Scholar
Sehnke PC, Laughner B, Cardasis H, Powell D, Ferl RJ. Exposed loop domains of complexed 14-3-3 proteins contribute to structural diversity and functional specificity. Plant Physiol. 2006;140(2):647–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Börnke F. The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J Plant Physiol. 2005;162(2):161–8.
Article
PubMed
Google Scholar
Truong AB, Masters SC, Yang H, Fu H. Role of the 14-3-3 C-terminal loop in ligand interaction. Proteins. 2002;49(3):321–5.
Article
CAS
PubMed
Google Scholar
Paul AL, Sehnke PC, Ferl RJ. Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions. Mol Biol Cell. 2005;4(16):1735.
Article
Google Scholar
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, et al. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. 2010;42(10):833–9.
Article
CAS
PubMed
Google Scholar
Wilson RS, Swatek KN, Thelen JJ. Regulation of the regulators: post-translational modifications, subcellular, and spatiotemporal distribution of plant 14-3-3 proteins. Front Plant Sci. 2016;7:611.
Article
PubMed
PubMed Central
Google Scholar
Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J. Polar PIN localization directs auxin flow in plants. Science. 2006;312(5775):883.
Article
CAS
PubMed
Google Scholar
Haga K, Takano M, Neumann R, Iino M. The rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for PHOTOTROPISM of coleoptiles and lateral translocation of auxin. Plant Cell. 2005;17(1):103–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Chory J. Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science. 2006;313(5790):1118–22.
Article
CAS
PubMed
Google Scholar
Choi H, Hong J, Ha J, Kang J, Kim SY. ABFs, a family of ABA-responsive element binding factors. J Biol Chem. 2000;275(3):1723–30.
Article
CAS
PubMed
Google Scholar
Adams E, Diaz C, Hong J, Shin R. 14-3-3 proteins participate in light signaling through association with phytochrome interacting factors. Int J Mol Sci. 2014;15(12):22801–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing L, Zhang D, Li Y, Shen Y, Zhao C, Ma J, An N, Han M. Transcription profiles reveal sugar and hormone signaling pathways mediating flower induction in apple (Malus domestica Borkh.). Plant Cell Physiol. 2015;56(10):2052–68.
Article
CAS
PubMed
Google Scholar
Du L, Qi S, Ma J, Xing L, Fan S, Zhang S, Li Y, Shen Y, Zhang D, Han M. Identification of TPS family members in apple (Malus × domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiol Bioch. 2017;120:10–23.
Article
CAS
Google Scholar
Mimida N, Komori S, Suzuki A, Wada M. Functions of the apple TFL1/FT orthologs in phase transition. Sci Hortic. 2013;156:106–12.
Article
CAS
Google Scholar
Li Y, Zhang D, Xing L, Zhang S, Zhao C, Han M. Effect of exogenous 6-benzylaminopurine (6-BA) on branch type, floral induction and initiation, and related gene expression in ‘Fuji’ apple (Malus domestica Borkh). Plant Growth Regul. 2016;79(1):65–70.
Article
CAS
Google Scholar
Zhang S, Gottschalk C, van Nocker S. Genetic mechanisms in the repression of flowering by gibberellins in apple (Malus × domestica Borkh.). BMC Genom. 2019;20(1):747.
Article
CAS
Google Scholar
Haberman A, Ackerman M, Crane O, Kelner J, Costes E, Samach A. Different flowering response to various fruit loads in apple cultivars correlates with degree of transcript reaccumulation of a TFL1-encoding gene. Plant J. 2016;87(2):161–73.
Article
CAS
PubMed
Google Scholar
Roberts MR. 14-3-3 proteins find new partners in plant cell signalling. Trends Plant Sci. 2003;8(5):218–23.
Article
CAS
PubMed
Google Scholar
Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell. 2011;23(9):3172–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet. 2014;46(12):1337–42.
Article
CAS
PubMed
Google Scholar
Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2015;31(8):1296–7.
Article
PubMed
Google Scholar
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei F, Coe E, Nelson W, Bharti AK, Engler F, Butler E, et al. Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet. 2007;3(7):e123.
Article
PubMed
PubMed Central
Google Scholar
Guitton B, Kelner JJ, Celton JM, Sabau X, Renou JP, Chagné D, Costes E. Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biol. 2016;16(1):1–22.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
PubMed
Google Scholar
Waadt R, Schmidt LK, Lohse M, Hashimoto K, Bock R, Kudla J. Multicolor bimolecular fluorescence complementation reveals simultaneous formation of alternative CBL/CIPK complexes in planta. Plant J. 2008;56(3):505–16.
Article
CAS
PubMed
Google Scholar