FAOSTAT. Production domain. In: Crops. Rome: FAO; 2019. Updated January 18, Accessed 28 Aug 2019.
Google Scholar
Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. Ann Bot. 2018;121:603–16.
Article
CAS
PubMed
Google Scholar
Vikram P, Franco J, Burgueño-Ferreira J, Li H, Sehgal D, Saint Pierre C, Ortiz C, Sneller C, Tattaris M, Guzman C, Sansaloni CP, Fuentes-Davila G, Reynolds M, Sonders K, Singh P, Payne T, Wenzl P, Sharma A, Bains NS, Singh GP, Crossa J, Singh S. Unlocking the genetic diversity of creole wheats. Sci Rep. 2016;6:1–13.
CAS
Google Scholar
Li A, Liu D, Yang W, Kishii M, Mao L. Synthetic Hexaploid wheat: yesterday, today, and tomorrow. Engineering. 2018;4:552–8.
Article
CAS
Google Scholar
IWGSC, Marcussen T, Sandve SR, Heier L, Pfeifer M, Kugler KG, Zhan B, Spannagl M, Pfeifer M, Jakobsen KS, BBH W, Steuernagel B, KFX M, Olsen O-A, Sandve SR, Zhan B, Spannagl M, Pfeifer M, Wheat TI, Pfeifer M, Kugler KG, Sandve SR, Zhan B. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788.
Article
CAS
Google Scholar
Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat researchand breeding using a fully annotated reference genome. Science. 2018;361:661.
Google Scholar
Jaiswal SJP, Singh A, Gahatyari NC. Genetic diversity analysis in bread wheat (Triticum aestivum L.em. Thell.) for yield and physiological traits. Int J Curr Microbiol Appl Sci. 2019;8(2):3059–68.
Article
Google Scholar
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, Korzun V, Langridge P. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. J Exp Bot. 2013;64:5411–28.
Article
CAS
PubMed
Google Scholar
Tucker EJ, Baumann U, Kouidri A, Suchecki R, Baes M, Garcia M, Okada T, Dong C, Wu Y, Sandhu A, Singh M, Langridge P, Wolters P, Albertsen MC, Cigan AM, Whitford R. Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding. Nat Commun. 2017;8:1.
Article
CAS
Google Scholar
Longin CFH, et al. Hybrid wheat: quantitative genetic parameters and consequences for the design of breeding programs. Theor Appl Genet. 2013;126:2791–801.
Article
PubMed
Google Scholar
Muhleisen J, Piepho HP, Maurer HP, Longin CF, Reif JC. Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet. 2014;127:309–16.
Article
PubMed
Google Scholar
Ni F, Qi J, Hao Q, Lyu B, Luo MC, Wang Y, Chen F, Wang S, Zhang C, Epstein L, Zhao X, Wang H, Zhang X, Chen C, Sun L, Fu D. Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species. Nat Commun. 2017;8:1–12.
Article
CAS
Google Scholar
Longin C, et al. Hybrid breeding in autogamous cereals. Theor Appl Genet. 2012;125:1087–96.
Article
PubMed
Google Scholar
Xia C, Zhang L, Zou C, Gu Y, Duan J, Zhao G, Wu J, Liu Y, Fang X, Gao L, Jiao Y, Sun J, Pan Y, Liu X, Jia J, Kong X. A TRIM insertion in the promoter of Ms2 causes male sterility in wheat. Nat Commun. 2017;8(May):1–9.
Google Scholar
Bohra A, Jha UC, Adhimoolam P, et al. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016;35:967–93.
Article
CAS
PubMed
Google Scholar
Bohn M, Friedrich UH, Melchinger AE. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs and SSRs and their use for predicting progeny variance. Crop Sci. 1999;39:228–37.
Article
CAS
Google Scholar
Prasad M, Varshney RK, Roy JK, Balyan HS, Gupta PK. The use of microsatellites for detecting DNA polymorphism, genotype identification and genetic diversity in wheat. Theor Appl Genet. 2000;100:584–92.
CAS
Google Scholar
Landjeva S, Korzun V, Ganeva G. Evaluation of genetic diversity among Bulgarian winter wheat (Triticum aestivum L.) varieties during the period 1925–2003 using microsatellites. Genet Resour Crop Ev. 2006;53:1605–14.
Article
CAS
Google Scholar
Prasad B, Babar MA, Xu XY, Bai GH, Klatt AR. Genetic diversity in the U.S. hard red winter wheat cultivars as revealed by microsatellite markers. Crop Pasture Sci. 2009;60:16–24.
Article
CAS
Google Scholar
Zhuang PP, Ren QC, Li W, Chen GY. Genetic diversity of Persian wheat (Triticum turgidum ssp. carthlicum) accessions by EST-SSR markers. Am J Biochem Mol Biol. 2011;1(2):223–30.
Article
Google Scholar
Arora A, Kundu S, Dilbaghi N, Sharma I, Tiwari R. Population structure and genetic diversity among Indian wheat varieties using microsatellite (SSR) markers. Aust J Crop Sci. 2014;8:1281–9.
Google Scholar
Wingen LU, West C, Waite ML, Collier S, Orford S, Goram R, Yang CY, King J, Allen AM, Burridge A, Edwards KJ, Griffiths S. Wheat landrace genome diversity. Genetics. 2017;205:1657–76.
Article
PubMed
PubMed Central
Google Scholar
Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D'Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ. Transcript- specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J. 2011;9:1086–99.
Article
CAS
PubMed
Google Scholar
Jia M, Guan J, Zhai Z, Geng S, Zhang X, Mao L, Li A. Wheat functional genomics in the era of next generation sequencing: an update. Crop J. 2018;6:7–14.
Article
Google Scholar
Sansaloni C, Petroli C, Jaccoud D, et al. Diversity arrays technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of eucalyptus. BioMed Cent. 2011;5:P54.
Google Scholar
Poland JA, Brown PJ, Sorrells ME, Jannink JL. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One. 2012a;7:e32253.
Article
CAS
PubMed
PubMed Central
Google Scholar
Courtois B, Audebert A, Dardou A, et al. Genome-wide association mapping of root traits in a japonica rice panel. PLoS One. 2013;8:e78037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sehgal D, Vikram P, Sansaloni CP, et al. Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS One. 2015;10:e0132112.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Lopez da Silva M, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS. 2013;110(20):8057–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan KW, Wang S, Lun Y, et al. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol. 2015;16:48.
Article
PubMed
PubMed Central
Google Scholar
Riaz A, Hathorn A, Dinglasan E, et al. Into the vault of the Vavilov wheats: old diversity for new alleles. Genet Resour Crop Ev. 2016;64:531–44.
Article
Google Scholar
Shi F, Tibbits J, Pasam RK, et al. Exome sequence genotype imputation in globally diverse hexaploid wheat accessions. Theor Appl Genet. 2017;130:1393–404.
Article
CAS
PubMed
Google Scholar
Ren J, Sun D, Chen L, et al. Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. Int J Mol Sci. 2013;14:7061–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scherlosky A, Marchioro VS, de Assis FF, Braccini AL, Schuster I. Genetic variability of Brazilian wheat germplasm obtained by high-density SNP genotyping. Crop Breed Appl Biotech. 2018;18:399–408.
Article
Google Scholar
Tadesse W, Ogbonnaya FC, Jighly A, et al. Genome-Wide Association Mapping of yield and grain quality traits in winter wheat genotypes. PLoS One. 2015;10(10):e0141339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Breseghello F, Sorrells ME. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics. 2006;172(2):1165–77.
Article
PubMed
PubMed Central
Google Scholar
Massman J, Cooper B, Horsley R, et al. Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed. 2006;27(4):439–54.
Article
Google Scholar
Joukhadar R, El-Bouhssini M, Jighly A, Ogbonnaya FC. Genome-wide association mapping for five major pest resistances in wheat. Mol Breed. 2013;32:943–60.
Article
CAS
Google Scholar
Frankel OH. Genetic perspectives of germplasm conservation. In: Arber W, Llimensee K, Peacock WJ, Starlinger P, editors. Genetic Manipulation: Impact on Man and Society. Cambridge: Cambridge University Press; 1984. p. 161–70.
Google Scholar
Brown AHD. Core collections: a practical approach to genetic resources management. Genome. 1989;31:818–24.
Article
Google Scholar
Brown AHD. The core collection at the crossroads. In: Hodgkin T, Brown HD, van Hintum TL, Morales EV, editors. Core collections of plant genetic resources. UK: Wiley; 1995. p. 3–19.
Google Scholar
Odong TL, Jansen J, van Eeuwijk FA, van Hintum TJL. Quality of core collections for effective utilisation of genetic resources review, discussion and interpretation. Theor Appl Genet. 2013;126:289–305.
Article
CAS
PubMed
Google Scholar
Research Centre for Cultivar Testing. Varieties comparison. https://coboru.gov.pl/PDO/porownanieodmian.aspx. Accessed 23 June 2019.
Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012b;5:103–13.
CAS
Google Scholar
Saintenac C, Jiang D, Wang S, Akhunov E. Sequence-based mapping of the polyploid wheat genome. G3 genes, genomes. Genet. 2013;3:1105–14.
Google Scholar
Wang SC, Wong DB, Forrest K, Allen A, Chao SM, Huang BE, Mac-caferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, Sequencing IWG. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J. 2014;12:787–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burridge AJ, Winfield MO, Allen AM, Wilkinson PA, Barker GLA, Coghill J, Waterfall C, Edwards KJ. High-density SNP genotyping Array for Hexaploid wheat and its relatives. In: Bhalla PL, Singh MB, editors. Wheat biotechnology: methods and protocols. New York: Springer New York; 2017. p. 293–306.
Chapter
Google Scholar
Rimbert H, Darrier B, Navarro J, Kitt J, Choulet F, Leveugle M, Duarte J, Riviere N, Eversole K, Le Gouis J, Davassi A, Balfourier F, Le Paslier M-C, Lie Berard A, Brunel D, Feuillet C, Poncet C, Sourdille P, Paux E. High throughput SNP discovery and genotyping in hexaploid wheat. PLoS One. 2018;3:1–19.
Google Scholar
Winfield MO, Allen AM, Burridge AJ, Barker GLA, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J. 2016;14:1195–206.
Article
CAS
PubMed
Google Scholar
Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L. Construction of Agropyron Gaertn. Genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J. 2017;16:818–27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Balfourier F, Bouchet S, Robert S, DeOliveira R, Rimbert H, Kitt J, Choulet F, Paux E. Worldwide phylogeography and history of wheat genetic diversity. Sci Adv. 2019;5:eaav0536.
Article
PubMed
PubMed Central
Google Scholar
Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001;13:1749–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol. 2006;17:155–60.
Article
CAS
PubMed
Google Scholar
Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet. 2015;128:353–63.
Article
CAS
PubMed
Google Scholar
Liu J, Rasheed A, He Z, Imtiaz M, Arif A, et al. Genome-wide variation patterns between landraces and cultivars uncover divergent selection during modern wheat breeding. Theor Appl Genet. 2019;132:2509–23.
Article
CAS
PubMed
Google Scholar
Alipour H, Bihamta MR, Mohammadi V, Peyghambari SA, Bai G, Zhang G. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars. Front Plant Sci. 2017;8:1293.
Article
PubMed
PubMed Central
Google Scholar
Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KFM, Poland J, Baenziger PS. Genetic diversity and population structure of F3:6 Nebraska winter wheat genotypes using genotyping-by-sequencing. Front Genet. 2018;9:76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics. 2010;11:702.
Article
CAS
PubMed
PubMed Central
Google Scholar
Würschum T, et al. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet. 2013;126:1477–86.
Article
PubMed
CAS
Google Scholar
Chao S, Dubcovsky J, Dvorak J, Luo M-C, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (i L.). BMC Genomics. 2010;11:727.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mirzaghaderi G, Mason AS. Broadening the bread wheat D genome. Theor Appl Genet. 2019;132:1295–307.
Article
CAS
PubMed
Google Scholar
Chao S, Zhang W, Akhunov E, Sherman J, Ma Y, Luo MC, Dubcovsky J. Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed. 2009;23:23–33.
Article
CAS
Google Scholar
Lopes M, Dreisigacker S, Peña R, Sukumaran S, Reynolds M. Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat. Theor Appl Genet. 2014;128:453–64.
Article
PubMed
CAS
Google Scholar
Liu J, He Z, Rasheed A, et al. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol. 2017;17:220.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mir RR, Kumar J, Balyan HS, Gupta PK. A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genet Resour Crop Evol. 2012;59:717–26.
Article
CAS
Google Scholar
Bhatta M, Morgounov A, Belamkar V, et al. Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genomics. 2018;19:591.
Article
PubMed
PubMed Central
Google Scholar
Roncallo PF, Beaufort V, Larsen AO, Dreisigacker S, Echenique V. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. PLoS One. 2019;14(6):e0218562.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joukhadar R, Daetwyler HD, Bansal U, Gendall AR, Hayden MJ. Genetic diversity, Population Structure and Ancestral Origin of Australian Wheat. Front Plant Sci. 2017;8:2115.
Article
PubMed
PubMed Central
Google Scholar
Rufo R, Alvaro F, Royo C, Soriano JM. From landraces to improved cultivars: assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS One. 2019;14(7):e0219867.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, et al. Structural and functional partitioning of bread wheat chromosome 3B. Science. 2014;345:1249721.
Article
PubMed
CAS
Google Scholar
Glover N, Daron J, Pingault L, Vandepoele K, Paux E, Feuillet C, et al. Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol. 2015;16:188.
Article
PubMed
PubMed Central
CAS
Google Scholar
Montenegro JD, Golicz AA, Bayer PE, Hurgobin B, Lee H, Chan CKK, Visendi P, Lai K, Dolezel J, Batley J, Edwards D. The pangenome of hexaploid bread wheat. Plant J. 2017;90:1007–13.
Article
CAS
PubMed
Google Scholar
Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 2012;491:705–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feldman M, Levy AA. Allopolyploidy - a shaping force in the evolution of wheat genomes. Cytogenet Genome Res. 2005;109:250–8.
Article
CAS
PubMed
Google Scholar
Kumar D, Chhokar V, Sheoran S, et al. Characterization of genetic diversity and population structure in wheat using array based SNP markers. Mol Biol Rep. 2020;47:293–306.
Article
CAS
PubMed
Google Scholar
Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;9:783–96.
Article
CAS
Google Scholar
Uniprot Database. https://www.uniprot.org. Accessed 12 Mar 2020.
Hedden P, Sponsel VA. Century of gibberellin research. J Plant Growth Regul. 2015;34:740–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skubacz A, Daszkowska-Golec A. Seed dormancy: the complex process regulated by Abscisic acid, gibberellins, and other Phytohormones that makes seed germination work. In: El-Esawi M, editor. Phytohormones - signaling mechanisms and crosstalk in plant development and stress responses. London: InTech; 2017.
Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400:256–61.
Article
CAS
PubMed
Google Scholar
Joshi S, Choukimath A, Isenegger D, Panozzo J, Spangenberg G, Kant S. Improved wheat growth and yield by delayed leaf senescence using developmentally regulated expression of a Cytokinin biosynthesis gene. Front Plant Sci. 2019;10:1285.
Article
PubMed
PubMed Central
Google Scholar
Mackay I, Horwell A, Garner J, White J, McKee J, Philpott H. Reanalysis of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theor Appl Genet. 2011;122:225–38.
Article
CAS
PubMed
Google Scholar
Research Centre for Cultivar Testing. http://www.coboru.pl. Accessed 23 June 2020.
Targońska M, Bolibok-Bragoszewska H, Rakoczy-Trojanowska M. Assessment of genetic diversity in Secale cereale based on SSR markers. Plant Mol Biol Rep. 2016;34:37–51.
Article
Google Scholar
van Hintum TJL. The general methodology for creating a core collection. In: Johnson RC, Hodgkin T, editors. Core collections for today and tomorrow. Italy: IPGRI; 1999. p. 10–7.
Google Scholar
Milligan BG. Plant DNA isolation. In: Hoelzel AR, editor. Molecular analysis of populations: a practical approach. Oxford: IRL Press; 1992. p. 59–88.
Google Scholar
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122.
Article
PubMed
PubMed Central
CAS
Google Scholar
Malosetti M, Ribaut JM, van Eeuwijk FA. The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis. Front Physiol. 2013;4:44.
Article
CAS
PubMed
PubMed Central
Google Scholar
VSN International. Genstat for Windows. 19th ed. Hemel Hempstead: VSN International; 2017. Web page: Genstat.co.uk.
Google Scholar
Alaux M, Rogers J, Letellier T, Flores R, Alfama F, Pommier C, Mohellibi N, Durand S, Kimmel E, Michotey C, Guerche C, Loaec M, Lainé M, Steinbach D, Choulet F, Rimbert H, Leroy P, Guilhot N, Salse J, Feuillet C, International Wheat Genome Sequencing Consortium, Paux E, Eversole K, Adam-Blondon AF, Quesneville H. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018;19(1):111.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramirez-Gonzalez RH, Uauy C, Caccamo M. PolyMarker: a fast polyploid primer design pipeline. Bioinformatics. 2015;31(12):2038–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosyara U, Kishii M, Payne T, et al. Genetic contribution of synthetic Hexaploid wheat to CIMMYT’s spring bread wheat breeding Germplasm. Sci Rep. 2019;9(1):12355.
Article
PubMed
PubMed Central
CAS
Google Scholar