Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al.A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2012; 6:e1455.
Article
CAS
PubMed
PubMed Central
Google Scholar
International Helminth Genomes Consortium. Comparative genomics of the major parasitic worms. Nat Genet. 2019; 51:163–74.
Article
CAS
Google Scholar
Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al.The genome of the blood fluke Schistosoma mansoni. Nature. 2009; 460(7253):352–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sánchez-Flores A, Brooks KL, et al.The genomes of four tapeworm species reveal adaptations to parasitism. Nature. 2013; 496:57–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson PD, Zarowiecki M, James K, Baillie A, Bartl G, Burchell P, et al.Genome-wide transcriptome profiling and spatial expression analyses identify signals and switches of development in tapeworms. EvoDevo. 2018; 9:21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cunningham LJ, Olson PD. Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era. Parasit Vectors. 2010; 3:123.
Article
PubMed
PubMed Central
Google Scholar
Macchiaroli N, Cucher M, Kamenetzky L, Yones C, Bugnon L, Berriman M, et al.Identification and expression profiling of microRNAs in Hymenolepis. Int J Parasitol. 2019; 49:211–23.
Article
CAS
PubMed
Google Scholar
Hossain M, Jones AW. The chromosomes of Hymenolepis microstoma (Dujardin 1845). J Parasitol. 1963:305–7. https://doi.org/10.2307/3276001.
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite- a comprehensive resource for helminth genomics. Mol Biochem Parasitol. 2017; 215:2–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sharan R, Ideker T. Modeling cellular machinery through biological network comparison. Nat Biotechnol. 2006; 24:427–33.
Article
CAS
PubMed
Google Scholar
von Mering C, Zdobnov EM, Tsoka S, Ciccarelli FD, Pereira-Leal JB, Ouzounis CA, et al.Genome evolution reveals biochemical networks and functional modules. Proc Natl Acad Sci USA. 2003; 100:15428–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barabási AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nature Rev Genet. 2004; 5:101–13.
Article
PubMed
CAS
Google Scholar
He X, Zhang J. Why do hubs tend to be essential in protein networks?PLoS Genet. 2006; 2:e88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001; 411:41–2.
Article
CAS
PubMed
Google Scholar
Brown KR, Jurisica I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 2007; 8:R95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fraser HB, Hirsh AE, Steinmetz LM, Scharfe C, Feldman MW. Evolutionary rate in the protein interaction network. Science. 2002; 296:750–2.
Article
CAS
PubMed
Google Scholar
Nguyen Ba AN, Yeh BJ, van Dyk D, Davidson AR, Andrews BJ, Weiss EL, et al.Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Sci Signal. 2012; 5:rs1.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, et al.Comparative assessment of large-scale data sets of protein-protein interactions. Nature. 2002; 417:399–403.
Article
CAS
PubMed
Google Scholar
Wuchty S, Barabási AL, Ferdig MT. Stable evolutionary signal in a yeast protein interaction network. BMC Evol Biol. 2006; 6:8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, et al.Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proc Natl Acad Sci USA. 2003; 100:11394–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, et al.Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res. 2001; 11:2120–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castillo-Lara S, Abril JF. PlanNET: homology-based predicted interactome for multiple planarian transcriptomes. Bioinformatics. 2018; 34:1016–23.
Article
CAS
PubMed
Google Scholar
Gu H, Zhu P, Jiao Y, Meng Y, Chen M. PRIN: a predicted rice interactome network. BMC Bioinformatics. 2011; 12:161.
Article
PubMed
PubMed Central
Google Scholar
Lin M, Shen X, Chen X. PAIR: the predicted Arabidopsis interactome resource. Nucleic Acids Res. 2011; 39:D1134–40.
Article
CAS
PubMed
Google Scholar
Yellaboina S, Dudekula DB, Ko MS. Prediction of evolutionarily conserved interologs in Mus musculus. BMC Genomics. 2008; 9:465.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bhardwaj J, Gangwar I, Panzade G, Shankar R, Yadav SK. Global de novo protein-protein interactome Elucidates Interactions of Drought-Responsive Proteins in Horse Gram (Macrotyloma uniflorum). J Proteome Res. 2016; 15:1794–809.
Article
CAS
PubMed
Google Scholar
Titz B, Rajagopala SV, Goll J, Häuser R, McKevitt MT, Palzkill T, et al.The binary protein interactome of Treponema pallidum–the syphilis spirochete. PloS ONE. 2008; 3:e2292.
Article
PubMed
PubMed Central
CAS
Google Scholar
Musungu B, Bhatnagar D, Brown RL, Fakhoury AM, Geisler M. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize. Front Genet. 2015; 6:201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006; 34:D535–9.
Article
CAS
PubMed
Google Scholar
Lee I, Date SV, Adai AT, Marcotte EM. A probabilistic functional network of yeast genes. Science. 2004; 306:1555–8.
Article
CAS
PubMed
Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498–504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olson PD. Hox genes and the parasitic flatworms: new opportunities, challenges and lessons from the free-living. Parasitol Int. 2008; 57:8–17.
Article
CAS
PubMed
Google Scholar
Ruggiero MA, Gordon DP, Orrell TM, Bailly N, Bourgoin T, Brusca RC, et al.A higher level classification of all living organisms. PloS ONE. 2015; 10:e0119248.
Article
PubMed
PubMed Central
CAS
Google Scholar
Assenov Y, Ramírez F, Schelhorn SE, Lengauer T, Albrecht M. Computing topological parameters of biological networks. Bioinformatics. 2008; 24:282–4.
Article
CAS
PubMed
Google Scholar
Barabási AL, Albert R. Emergence of scaling in random networks. Science. 1999; 286:509–12.
Article
PubMed
Google Scholar
Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science. 2002; 296:910–13.
Article
CAS
PubMed
Google Scholar
Freeman LC. A Set of Measures of Centrality Based on Betweenness. Sociometry. 1977; 40(1):35–41.
Article
Google Scholar
Watts DJ, Strogatz SH. Collective dynamics of ’small-world’ networks. Nature. 1998; 393:440–2.
Article
CAS
PubMed
Google Scholar
Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011; 12:220.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joy MP, Brock A, Ingber DE, Huang S. High-betweenness proteins in the yeast protein interaction network. J Biomed Biotechnol. 2005; 2005:96–103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007; 3:e59.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ma HW, Zeng AP. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics. 2003; 19:1423–30.
Article
CAS
PubMed
Google Scholar
Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci USA. 2002; 99:7821–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Juliano CE, Swartz SZ, Wessel GM. A conserved germline multipotency program. Development. 2010; 137:4113–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Riddiford N, Olson PD. Wnt gene loss in flatworms. Dev Genes Evol. 2011; 221(4):187–97.
Article
CAS
PubMed
Google Scholar
Koziol U, Jarero F, Olson PD, Brehm K. Comparative analysis of Wnt expression identifies a highly conserved developmental transition in flatworms. BMC Biology. 2016; 14(1):10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Almuedo-Castillo M, Sureda-Gómez M, Adell T. Wnt signaling in planarians: new answers to old questions. Int J Dev Biol. 2012; 56(1-2-3):53–65.
Article
CAS
PubMed
Google Scholar
van Wolfswinkel JC, Wagner DE, Reddien PW. Single-cell analysis reveals functionally distinct classes within the planarian stem cell compartment. Cell Stem Cell. 2014; 15(3):326–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brayer KJ, Lynch VJ, Wagner GP. Evolution of a derived protein-protein interaction between HoxA11 and Foxo1a in mammals caused by changes in intramolecular regulation. Proc Natl Acad Sci USA. 2011; 108(32):E414–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet. 2008; 40:181–8.
Article
CAS
PubMed
Google Scholar
Schwechheimer C. The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim Biophys Acta. 2004; 1695:45–54.
Article
CAS
PubMed
Google Scholar
Lee I, Marcotte EM. Effects of functional bias on supervised learning of a gene network model. Methods Mol Biol. 2009; 541:463–75.
Article
CAS
PubMed
Google Scholar
Myers CL, Barrett DR, Hibbs MA, Huttenhower C, Troyanskaya OG. Finding function: evaluation methods for functional genomic data. BMC Genomics. 2006; 7:187.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee I, Li Z, Marcotte EM. An improved, bias-reduced probabilistic functional gene network of baker’s yeast, Saccharomyces cerevisiae. PloS ONE. 2007; 2:e988.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen J, Hsu W, Lee ML, Ng SK. Discovering reliable protein interactions from high-throughput experimental data using network topology. Artif Intell Med. 2005; 35:37–47.
Article
PubMed
Google Scholar
Chen J, Hsu W, Lee ML, Ng SK. Increasing confidence of protein interactomes using network topological metrics. Bioinformatics. 2006; 22:1998–2004.
Article
CAS
PubMed
Google Scholar
James K, Wipat A, Hallinan J. Integration of Full-Coverage Probabilistic Functional Networks with Relevance to Specific Biological Processes In: Paton NW, Missier P, Hedeler C, editors. Data Integr Life Sci. Berlin, Heidelberg: Springer Berlin Heidelberg: 2009. p. 31–46.
Google Scholar
Aitken A, Collinge DB, van Heusden BP, Isobe T, Roseboom PH, Rosenfeld G, et al.14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci. 1992; 17:498–501.
Article
CAS
PubMed
Google Scholar
Teichmann A, Vargas DM, Monteiro KM, Meneghetti BV, Dutra CS, Paredes R, et al.Characterization of 14-3-3 isoforms expressed in the Echinococcus granulosus pathogenic larval stage. J Prot Res. 2015; 14:1700–15.
Article
CAS
Google Scholar
Brehm K. Echinococcus multilocularis as an experimental model in stem cell research and molecular host-parasite interaction. Parasitology. 2010; 137(03):537–55.
Article
CAS
PubMed
Google Scholar
Saito RM, Perreault A, Peach B, Satterlee JS, van den Heuvel S. The CDC-14 phosphatase controls developmental cell-cycle arrest in C. elegans. Nat Cell Biol. 2004; 6(8):777.
Article
CAS
PubMed
Google Scholar
Powers BL, Hall MC. Re-examining the role of Cdc14 phosphatase in reversal of Cdk phosphorylation during mitotic exit. J Cell Sci. 2017; 130(16):2673–81.
Article
CAS
PubMed
Google Scholar
Sacristán MP, Ovejero S, Bueno A. Human Cdc14A becomes a cell cycle gene in controlling Cdk1 activity at the G2/M transition. Cell Cycle. 2011; 10(3):387–91.
Article
PubMed
CAS
Google Scholar
Azhagesan K, Ravindran B, Raman K. Network-based features enable prediction of essential genes across diverse organisms. PLoS ONE. 2018; 13(12):e0208722.
Article
PubMed
PubMed Central
Google Scholar
Benstead-Hume G, Chen X, Hopkins SR, Lane KA, Downs JA, Pearl FM. Predicting synthetic lethal interactions using conserved patterns in protein interaction networks. PLoS Comput Biol. 2019; 15(4):e1006888.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pinto JP, Machado RSR, Xavier JM, Futschik ME. Targeting molecular networks for drug research. Front Genet. 2014; 5:160.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharan R, Ulitsky I, Shamir R. Network-based prediction of protein function. Mol Sys Biol. 2007; 3(1):88.
Article
Google Scholar
Liang Z, Xu M, Teng M, Niu L. Comparison of protein interaction networks reveals species conservation and divergence. BMC Bioinformatics. 2006; 7:457.
Article
PubMed
PubMed Central
CAS
Google Scholar
Molyneux D, Savioli L, Engels D. Neglected tropical diseases: progress towards addressing the chronic pandemic. The Lancet. 2017; 389(10066):312–25.
Article
Google Scholar
Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, et al.The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLOS Negl Trop Dis. 2014; 8(7):1–9.
Article
Google Scholar
Cuesta-Astroz Y, Santos A, Oliveira G, Jensen LJ. Analysis of predicted host–parasite interactomes reveals commonalities and specificities related to parasitic lifestyle and tissues tropism. Front Immunol. 2019; 10:212.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soyemi J, Isewon I, Oyelade J, Adebiyi E. Inter-species/host-parasite protein interaction predictions reviewed. Curr Bioinforma. 2018; 13(4):396–406.
Article
CAS
Google Scholar
Wuchty S. Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS ONE. 2011; 6(11):1–8.
Google Scholar
Nourani E, Khunjush F, Durmuş S. Computational approaches for prediction of pathogen-host protein-protein interactions. Front Microbiol. 2015; 6:94.
Article
PubMed
PubMed Central
Google Scholar
Remmele CW, Luther CH, Balkenhol J, Dandekar T, Müller T, Dittrich MT. Integrated inference and evaluation of host–fungi interaction networks. Front Microbiol. 2015; 6:764.
Article
PubMed
PubMed Central
Google Scholar
Li S, Armstrong CM, Bertin N, Ge H, Milstein S, Boxem M, et al.A map of the interactome network of the metazoan C. elegans. Science. 2004; 303:540–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simonis N, Rual JF, Carvunis AR, Tasan M, Lemmens I, Hirozane-Kishikawa T, et al.Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network. Nat Methods. 2009; 6:47–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu H, Luscombe NM, Lu HX, Zhu X, Xia Y, Han JDJ, et al.Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 2004; 14:1107–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim E, Kim H, Lee I. JiffyNet: a web-based instant protein network modeler for newly sequenced species. Nuc Acid Res. 2013; 41:W192–7.
Article
Google Scholar
Shim JE, Lee T, Lee I. From sequencing data to gene functions: co-functional network approaches. Anim Cells Syst (Seoul). 2017; 21:77–83.
Article
CAS
Google Scholar
Montagne J, Preza M, Castillo E, Brehm K, Koziol U. Divergent Axin and GSK-3 paralogs in the beta-catenin destruction complexes of tapeworms. Dev Genes Evol. 2019:1–14. (Suppl 2).
Su H, Sureda-Gómez M, Rabaneda-Lombarte N, Gelabert M, Xie J, Wu W, et al.A C-terminally truncated form of β-catenin acts as a novel regulator of Wnt/ β-catenin signaling in planarians. PLoS Genet. 2017; 13(10):e1007030–32.
Article
PubMed
PubMed Central
CAS
Google Scholar
UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 2018; 47(D1):D506–15.
Article
CAS
Google Scholar
Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003; 4:2.
Article
PubMed
PubMed Central
Google Scholar
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29:15–21.
Article
CAS
PubMed
Google Scholar
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30:923–30.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.
Article
PubMed
PubMed Central
CAS
Google Scholar