Graham MR, Smoot LM, Migliaccio CAL, Virtaneva K, Sturdevant DE, Porcella SF, et al. Virulence control in group a streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A. 2002;99(21):13855–60 Available from: http://www.pnas.org/cgi/content/long/99/21/13855.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krismer B, Weidenmaier C, Zipperer A, Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat Rev Microbiol. 2017;15(11):675–87. https://doi.org/10.1038/nrmicro.2017.104.
Article
CAS
PubMed
Google Scholar
Henriques-Normark B, Normark S. Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host. Exp Cell Res. 2010;316(8):1408–14. https://doi.org/10.1016/j.yexcr.2010.03.003.
Article
CAS
PubMed
Google Scholar
Causey WA. Staphylococcal and streptococcal infections of the skin. Prim Care. 1979;6(1):127–39 Available from: http://www.ncbi.nlm.nih.gov/pubmed/8902344.
Article
CAS
PubMed
Google Scholar
Patenge N, Pappesch R, Khani A, Kreikemeyer B. Genome-wide analyses of small non-coding RNAs in streptococci. Front Genet. 2015;6(MAY):1–13.
CAS
Google Scholar
Suzuki H, Lefébure T, Bitar PP, Stanhope MJ. Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae. BMC Genomics. 2012;13(1):38 Available from: http://www.biomedcentral.com/1471-2164/13/38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saccenti E, Nieuwenhuijse D, Koehorst JJ, Dos Santos VAPM, Schaap PJ. Assessing the metabolic diversity of streptococcus from a protein domain point of view. PLoS One. 2015;10(9):1–20.
Article
Google Scholar
Bosi E, Monk JM, Aziz RK, Fondi M, Nizet V, Palsson BØ. Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc Natl Acad Sci. 2016;113(26):E3801–9. https://doi.org/10.1073/pnas.1523199113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koehorst JJ, Van Dam JCJ, Van Heck RGA, Saccenti E, Dos Santos VAPM, Suarez-Diez M, et al. Comparison of 432 pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep. 2016;6(December):1–13. https://doi.org/10.1038/srep38699.
Article
CAS
Google Scholar
Koehorst JJ, Saccenti E, Schaap PJ, dos Santos VAP M, Suarez-Diez M. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Research. 2017;5(0):1987 Available from: https://f1000research.com/articles/5-1987/v3.
Article
PubMed Central
Google Scholar
Rouli L, Merhej V, Fournier PE, Raoult D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 2015;7:72–85. https://doi.org/10.1016/j.nmni.2015.06.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fuchs S, Mehlan H, Bernhardt J, Hennig A, Michalik S, Surmann K, et al. AureoWiki-the repository of the Staphylococcus aureus research and annotation community. Int J Med Microbiol. 2018;308(6):558–68. https://doi.org/10.1016/j.ijmm.2017.11.011.
Article
PubMed
Google Scholar
Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. Comparative genomics of the bacterial genus streptococcus illuminates evolutionary implications of species groups. PLoS One. 2014;9(6):e101229.
Article
PubMed
PubMed Central
Google Scholar
Snipen L, Almøy T, Ussery DW. Microbial comparative pan-genomics using binomial mixture models. BMC Genomics. 2009;10:1–8.
Article
Google Scholar
Tettelin H, Riley D, Cattuto C, Medini D. Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol. 2008;11(5):472–7.
Article
CAS
PubMed
Google Scholar
Protein F, Jeng A, Sakota V, Li Z, Datta V, Beall B, et al. Molecular genetic analysis of a group a streptococcus operon encoding serum opacity factor and a novel. J Bacteriol. 2003;185(4):1208–17 Available from: http://jb.asm.org/content/185/4/1208.full.pdf.
Article
Google Scholar
Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet 2001;357(9264):1225--40. https://doi.org/10.1016/S0140-6736(00)04403-2.
Matyi SA, Dupre JM, Johnson WL, Hoyt PR, White DG, Brody T, et al. Isolation and characterization of Staphylococcus aureus strains from a Paso del Norte dairy. J Diary Sci HHS Public Access. 2017;96(6):3535–42.
Article
Google Scholar
Staphylococcus TF. Chapter 12 in microbiology. In: S B, editor. Microbiology 4th edition. 4th ed. Galveston: University of Texas Medical Branch at Galveston; 1996. Chapter 12. Available from: https://www.ncbi.nlm.nih.gov/books/NBK8448/996.
Google Scholar
Li Y, Cao B, Zhang Y, Zhou J, Yang B, Wang L. Complete genome sequence of Staphylococcus aureus T0131, an ST239-MRSA-SCCmec type III clone isolated in China. J Bacteriol. 2011;193(13):3411–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sass P, Berscheid A, Jansen A, Oedenkoven M, Szekat C, Strittmatter A, et al. Genome sequence of Staphylococcus aureus VC40, a vancomycin- and daptomycin-resistant strain, to study the genetics of development of resistance to currently applied last-resort antibiotics. J Bacteriol. 2012;194(8):2107–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Baba T, Bae T, Schneewind O, Takeuchi F, Hiramatsu K. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol. 2008;190(1):300–10.
Article
CAS
PubMed
Google Scholar
Zautner AE, Krause M, Stropahl G, Holtfreter S, Frickmann H, Maletzki C, et al. Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. PLoS One. 2010;5(3).
Surmann K, Depke M, Dhople VM, Pané-Farré J, Hildebrandt P, Gumz J, et al. Analysis of Staphylococcus aureus proteins secreted inside infected human epithelial cells. Int J Med Microbiol. 2018;308(6):664-74. https://doi.org/10.1016/j.ijmm.2018.06.002.
Sendi P, Proctor RA. Staphylococcus aureus as an intracellular pathogen: the role of small colony variants. Trends Microbiol. 2009;17(2):54–8.
Article
CAS
PubMed
Google Scholar
Kreikemeyer B, McIver KS, Podbielski A. Virulence factor regulation and regulatory networks in streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol. 2003;11(5):224–32.
Article
CAS
PubMed
Google Scholar
Loof TG, Deicke C, Medina E. The role of coagulation/fibrinolysis during streptococcus pyogenes infection. Front Cell Infect Microbiol. 2014;4(September):1–8. https://doi.org/10.3389/fcimb.2014.00128/abstract.
Article
Google Scholar
Askarian F, Ajayi C, Hanssen A, Van Sorge NM. The interaction between Staphylococcus aureus SdrD and desmoglein 1 is important for adhesion to host cells. Nat Publ Gr. 2016;(October 2015):1–11. https://doi.org/10.1038/srep22134.
Eriksen NHR, Espersen F, Rosdahl VT, Jensen K, Godwin H, Wyllie DH, et al. Prevalence of Staphylococcus aureus protein a (spa) mutants in the community and hospitals in Oxfordshire. Epidemiol Infect. 1995;115(01):51–60 Available from: http://www.journals.cambridge.org/abstract_S0950268800058118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hermans SJ, Baker HM, Sequeira RP, Langley RJ, Baker EN, Fraser JD. Structural and functional properties of staphylococcal superantigen-like protein 4. Infect Immun. 2012;80(11):4004–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenkins A, Diep A, Mai TT, Vo NH, Warrener P, Suzich J, et al. Differential expression and roles of Staphylococcus aureus virulence determinants during colonization and disease. MBio. 2015;6(1):1–10.
Article
Google Scholar
Virulence factors of Streptococcus pyogenes and their roles [Internet]. [cited 2018 Dec 17]. Available from: https://microbeonline.com/virulence-factors-streptococcus-pyogenes-roles/.
Alborzi SZ, Devignes M, Ritchie D, Alborzi SZ, Devignes M, Ritchie D, et al. Associating gene ontology terms with Pfam protein domains to cite this version : HAL id : HAL-01531204 associating gene ontology terms with Pfam protein domains; 2017.
Google Scholar
Stemberk V, Jones RPO, Moroz O, Atkin KE, Edwards AM, Turkenburg JP, et al. Evidence for steric regulation of fibrinogen binding to Staphylococcus aureus Fibronectin-binding. Protein A. 2014;289(18):12842–51.
CAS
Google Scholar
Fries BC, Varshney AK. Bacterial toxins — staphylococcal enterotoxin B description of agent; 2013. p. 1–12.
Google Scholar
Zheng X, Bi C, Brooks M, DSH. Collagen-like proteins of pathogenic streptococci. Anal Chem. 2015;25(4):368–79.
Google Scholar
Rohde M, habi rer nat, Cleary PP. Adhesion and invasion of Streptococcus pyogenes into host cells and clinical relevance of intracellular streptococci. Univ Oklahoma Heal Sci Cent. 2016:1–30.
Gottlieb M, Long B, Koyfman A. The evaluation and management of toxic shock syndrome in the emergency department: a review of the literature. J Emerg Med. 2018;(December 2017):1–8. https://doi.org/10.1016/j.jemermed.2017.12.048.
Otto M. Staphylococcus aureus toxins Michael. Curr Opin Microbiol. 2015:32–7.
Kolar SL, Antonio Ibarra J, Rivera FE, Mootz JM, Davenport JE, Stevens SM, et al. Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen. 2013;2(1):18–34.
Article
CAS
PubMed
Google Scholar
Chen WH, Lu G, Chen X, Zhao XM, Bork P. OGEE v2: an update of the online gene essentiality database with special focus on differentially essential genes in human cancer cell lines. Nucleic Acids Res. 2017;45(D1):D940–4.
Article
CAS
PubMed
Google Scholar
Mäder U, Nicolas P, Depke M, Pané-Farré J, Debarbouille M, van der Kooi-Pol MM, et al. Staphylococcus aureus Transcriptome architecture: from laboratory to infection-mimicking conditions. PLoS Genet. 2016;12(4):1–32.
Article
Google Scholar
Chaudhuri RR, Allen AG, Owen PJ, Shalom G, Stone K, Harrison M, et al. Comprehensive identification of essential Staphylococcus aureus genes using transposon-mediated differential hybridisation (TMDH). BMC Genomics. 2009;10:1–18.
Article
Google Scholar
Forsyth RA, Haselbeck RJ, Ohlsen KL, Yamamoto RT, Xu H, Trawick JD, et al. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol. 2002;43(6):1387–400.
Article
CAS
PubMed
Google Scholar
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev. 2011;35(1):147–200.
Article
CAS
PubMed
Google Scholar
Edwards AM, Potts JR, Josefsson E, Massey RC. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA. PLoS Pathog. 2010;6(6):e1000964. https://doi.org/10.1371/journal.ppat.1000964.
Timmer AM, Kristian SA, Datta V, Jeng A, Gillen CM, Walker MJ, et al. Serum opacity factor promotes group A streptococcal epithelial cell invasion and virulence. Mol Microbiol. 2006;62(1):15–25 Available from: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L44386547%5Cn, https://doi.org/10.1111/j.1365-2958.2006.05337.x, http://mun-primo.hosted.exlibrisgroup.com/openurl/01MUN/01MUN_SERVICES?sid=EMBASE&issn=0950382X&id=doi:10.1111%2Fj.
Article
CAS
PubMed
Google Scholar
Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DYM, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26(3):422–47.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klingelhutz AJ, Salgado-pabón W. The Superantigen toxic shock syndrome toxin 1 alters human aortic endothelial cell function. Infect Immun. 2018;86(3):1–16. https://doi.org/10.1128/IAI.00848.17.
Article
Google Scholar
Stoll H, Ost M, Singh A, Mehling R, Neri D, Schäfer I, et al. Staphylococcal enterotoxins dose-dependently modulate the generation of myeloid-derived suppressor cells. Front Cell Infect Microbiol. 2018;8(September):1–15.
Google Scholar
Bae T, Banger AK, Wallace A, Glass EM, Aslund F, Schneewind O, et al. Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci. 2004;101(33):12312–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kamminga T, Koehorst JJ, Vermeij P, Slagman S-J, Martins dos Santos VAP, Bijlsma JJE, et al. Persistence of functional protein domains in mycoplasma species and their role in host specificity and synthetic minimal life. Front Cell Infect Microbiol. 2017;7:31 [cited 2017 Feb 7]. https://doi.org/10.3389/fcimb.2017.00031/full.
Article
PubMed
PubMed Central
Google Scholar
Cooper VS, Honsa E, Rowe H, Deitrick C, Iverson AR, Whittall JJ, et al. Experimental evolution in vivo to identify selective pressures during pneumococcal colonization. bioRxiv. 2020;5(3):1–17.
Google Scholar
Pain M, Hjerde E, Klingenberg C, Cavanagh JP. Comparative genomic analysis of Staphylococcus haemolyticus reveals key to hospital adaptation and pathogenicity. Front Microbiol. 2019;10(September):1–13.
CAS
Google Scholar
Anisimova M, Bielawski J, Dunn K, Yang Z. Phylogenomic analysis of natural selection pressure in streptococcus genomes. BMC Evol Biol. 2007;7:1–13.
Article
Google Scholar
Jamrozy D, Coll F, Mather AE, Harris SR, Harrison EM, MacGowan A, et al. Evolution of mobile genetic element composition in an epidemic methicillin-resistant Staphylococcus aureus: temporal changes correlated with frequent loss and gain events. BMC Genomics. 2017;18(1):1–12.
Article
Google Scholar
Mccarthy AJ, Lindsay JA, Loeffler A. Are all meticillin-resistant Staphylococcus aureus (MRSA) equal in all hosts? Epidemiological and genetic comparison between animal and human MRSA. Vet Dermatol. 2012;23(4):267–75.
Article
PubMed
Google Scholar
Osaki M, Takamatsu D, Shimoji Y, Sekizaki T. Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol. 2002;184(4):971–82 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=134807&tool=pmcentrez&rendertype=abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kao C, Chen P, Huang F, Chen C, Chi C, Lin Y, et al. Clinical and genetic analysis of invasive and non-invasive group A streptococcal infections in Central Taiwan; 2005. p. 105–11.
Google Scholar
McNeilly CL, McMillan DJ. Horizontal gene transfer and recombination in Streptococcus dysgalactiae subsp. equisimilis. Front Microbiol. 2014;5(DEC):1–6.
Google Scholar
Bork P, Doolittle RF. Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci. 1992;89(19):8990–4. https://doi.org/10.1073/pnas.89.19.8990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goyette-Desjardins G, Auger JP, Xu J, Segura M, Gottschalk M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent-an update on the worldwide distribution based on serotyping and sequence typing. Emerg Microbes Infect. 2014;3(March):e45.
PubMed
PubMed Central
Google Scholar
Kerdsin A, Puangpatra P, Tanimura S, Gottschalk M, Polwichai P, Dejsirilert S, et al. Genotypic profile of Streptococcus suis serotype 2 and clinical features of infection in humans, Thailand. Emerg Infect Dis. 2011;17(5):835–42.
Article
PubMed
PubMed Central
Google Scholar
Nghia HDT, Ngo TH, Le DL, Campbell J, To SD, Chau NVV, et al. Human case of Streptococcus suis serotype 16 infection. Emerg Infect Dis. 2008;14(1):155–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wertheim HFL, Nghia HDT, Taylor W, Schultsz C. Streptococcus suis: an emerging human pathogen. Clin Infect Dis. 2009;48(5):617–25.
Article
PubMed
Google Scholar
Hasegawa N, Sekizuka T, Sugi Y, Kawakami N, Ogasawara Y, Kato K, et al. Characterization of the pathogenicity of Streptococcus intermedius TYG1620 isolated from a human brain abscess based on the complete genome sequence with Transcriptome analysis and transposon mutagenesis in a murine subcutaneous abscess model. Infect Immun. 2017;85(2):1–15.
Article
Google Scholar
Allen AG, Bolitho S, Lindsay H, Khan S, Bryant C, Norton P, et al. Generation and characterization of a defined mutant of streptococcus suis lacking suilysin. Infect Immun. 2001;69(4):2732–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
He Z, Pian Y, Ren Z, Bi L, Yuan Y, Zheng Y, et al. Increased production of suilysin contributes to invasive infection of the Streptococcus suis strain 05ZYH33. Mol Med Rep. 2014;10(6):2819–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. A perspective on the potential zoonotic role of Streptococcus agalactiae: searching for a missing link in alternative transmission routes. Front Microbiol. 2018;9(March):1–5.
Google Scholar
Remmington A, Turner CE. The DNases of pathogenic lancefield streptococci. Microbiology. 2018;164(3):242–50.
Article
CAS
PubMed
Google Scholar
Sharma P, Lata H, Arya DK, Kashyap AK, Kumar H, Dua M, et al. Role of pilus proteins in adherence and invasion of streptococcus agalactiae to the lung and cervical epithelial cells. J Biol Chem. 2013;288(6):4023–34.
Article
CAS
PubMed
Google Scholar
Bryan JD, Shelver DW. Streptococcus agalactiae CspA is a serine protease that inactivates chemokines. J Bacteriol. 2009;191(6):1847–54.
Article
CAS
PubMed
Google Scholar
European Bioinformatics Institute. EnaBroswerTools [Internet]. [cited 2019 Nov 7]. Available from: https://github.com/enasequence/enaBrowserTools.
Koehorst JJ, van Dam JCJ, Saccenti E, dos Santos VAP M, Suarez-Diez M, Schaap PJ. SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics. 2017;(March):1–3. https://doi.org/10.1093/bioinformatics/btx767/4653704.
van Dam JCJ, Koehorst JJ, Vik JO, VAP MDS, Schaap PJ, Suarez-Diez M. The Empusa code generator and its application to GBOL, an extendable ontology for genome annotation. Sci Data. 2019;6(1):254. https://doi.org/10.1038/s41597-019-0263-7.
Article
PubMed
PubMed Central
Google Scholar
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.
Article
PubMed
PubMed Central
Google Scholar
Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2017;45(D1):D190–9.
Article
CAS
PubMed
Google Scholar
Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–85.
Article
CAS
PubMed
Google Scholar
Tange O. Gnu parallel-the command-line power tool.; login: The USENIX Magazine, 2011;36(1):42–47.
SPARQL endpoint interface to python [Internet]. [cited 2018 Aug 8]. Available from: https://rdflib.github.io/sparqlwrapper/.
Duncan Temple Lang and the CRAN team. CRAN - Package RCurl [Internet]. [cited 2018 Nov 1]. Available from: https://cran.r-project.org/web/packages/RCurl/index.html
Fang G, Rocha E, Danchin A. How essential are nonessential genes ? 2004.
Google Scholar
Christiansen MT, Kaas RS, Chaudhuri RR, Holmes MA, Hasman H, Aarestrup FM. Genome-wide high-throughput screening to investigate essential genes involved in methicillin-resistant Staphylococcus aureus sequence type 398 survival. PLoS One. 2014;9(2):e89018.
Article
PubMed
PubMed Central
Google Scholar
Fey PD, Endres JL, Yajjala VK, Fey PD, Endres JL, Yajjala K, et al. A genetic resource for rapid and comprehensive phenotype. MBio. 2013;4(1):1–8.
Article
Google Scholar
Le Breton Y, Belew AT, Valdes KM, Islam E, Curry P, Tettelin H, et al. Essential genes in the core genome of the human pathogen streptococcus pyogenes. Sci Rep. 2015;5:9838.
Article
PubMed
PubMed Central
Google Scholar
Levering J, Fiedler T, Sieg A, van Grinsven KWA, Hering S, Veith N, et al. Genome-scale reconstruction of the streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets. J Biotechnol. 2016;232:25–37. https://doi.org/10.1016/j.jbiotec.2016.01.035.
Article
CAS
PubMed
Google Scholar
Gurobi Optimization LLC. Gurobi optimizer reference manual [internet]; 2018. Available from: http://www.gurobi.com.
Google Scholar
Ebrahim A, JALBO P, Hyduke DR. COBRApy: constraints-based reconstruction and analysis for python. BMC Syst Biol. 2013;7:74. https://doi.org/10.1186/1752-0509-7-74.
Article
PubMed
PubMed Central
Google Scholar
Gostev M, Faulconbridge A, Brandizi M, Fernandez-Banet J, Sarkans U, Brazma A, et al. The BioSample database (BioSD) at the European bioinformatics institute. Nucleic Acids Res. 2012;40(D1):64–70.
Article
Google Scholar
Zhang BC, Zhang J, Sun L. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One. 2014;9(3):e91324.
Article
PubMed
PubMed Central
Google Scholar
Pridgeon JW, Zhang D, Zhang L. Complete genome sequence of the attenuated Novobiocin-resistant streptococcus iniae vaccine strain ISNO. Genome Announc. 2014;2(3):2007–8.
Google Scholar
Sun JR, Yan JC, Yen CY, Lee SY, Lu JJ. Invasive infection with streptococcus iniae in Taiwan. J Med Microbiol. 2007;56(9):1246–9.
Article
PubMed
Google Scholar
Rajoo S, Jeon W, Park K, Yoo S, Yoon I, Lee H, et al. Complete genome sequence of streptococcus iniae YSFST01-82, isolated from olive flounder in Jeju, South Korea. Genome Announc. 2015;3(2):10–1.
Article
Google Scholar
Holden MTG, Heather Z, Paillot R, Steward KF, Webb K, Ainslie F, et al. Genomic evidence for the evolution of Streptococcus equi host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog. 2009;5(3):e1000346.
Article
PubMed
PubMed Central
Google Scholar
Pelkonen S, Lindahl SB, Suomala P, Karhukorpi J, Vuorinen S, Koivula I, et al. Transmission of streptococcus equi subspecies zooepidemicus infection from horses to humans. Emerg Infect Dis. 2013;19(7):1041–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma Z, Geng J, Zhang H, Yu H, Yi L, Lei M, et al. Complete genome sequence of Streptococcus equi subsp. Zooepidemicus strain ATCC 35246. J Bacteriol. 2011;193(19):5583–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Ding D, Liu M, Yang X, Zong B, Wang X, et al. Effect of the glycosyltransferases on the capsular polysaccharide synthesis of Streptococcus suis serotype 2. Microbiol Res. 2016;185:45–54. https://doi.org/10.1016/j.micres.2016.02.002.
Article
CAS
PubMed
Google Scholar
Zhang Y, Lu C, Dong W, Pan Z, Zhong X, Lu P, et al. SssP1, a Streptococcus suis fimbria-like Protein transported by the SecY2/A2 system, contributes to bacterial virulence. Appl Environ Microbiol. 2018;84(18):1–17.
Article
Google Scholar
Chen C, Tang J, Dong W, Wang C, Feng Y, Wang J, et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS One. 2007;2(3):e315.
Article
PubMed
PubMed Central
Google Scholar
Barrett T, Clark K, Gevorgyan R, Gorelenkov V, Gribov E, Karsch-Mizrachi I, et al. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata. Nucleic Acids Res. 2012;40(D1):57–63.
Article
Google Scholar
Wang K, Chen J, Yao H, Lu C. Whole-genome sequence of Streptococcus suis serotype 4 reference strain 6407. Genome Announc. 2014;2(4):9–10.
Article
Google Scholar
Pan Z, Ma J, Dong W, Song W, Wang K, Lu C, et al. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis. Appl Environ Microbiol. 2015;81(3):976–85.
Article
PubMed
PubMed Central
Google Scholar
Xiao J, Hu P, Chen H, Wu J, Hua Y, Zhang A, et al. Comparative genomic analysis of Streptococcus suis reveals significant genomic diversity among different serotypes. BMC Genomics. 2011;12(1):523 Available from: http://www.biomedcentral.com/1471-2164/12/523.
Article
PubMed
PubMed Central
Google Scholar
Chatellier S, Harel J, Zhang Y, Higgins R, Brousseau R, Gottschalk M, et al. Phylogenetic diversity of Streptococcus suis strains of various serotypes as revealed by 16S rRNA gene sequence comparison. Int J Syst Bacteriol. 2009;48(2):581–9.
Article
Google Scholar
Pan X, Tang J, Zhao Y, Li M, Yao X, Hu D, et al. Isolation and characterization of a native avirulent strain of Streptococcus suis serotype 2: a perspective for vaccine development. Sci Rep. 2015;5(1):1–8.
Google Scholar
Boyle B, Vaillancourt K, Bonifait L, Charette SJ, Gottschalk M, Grenier D. Genome sequence of the swine pathogen streptococcus suis serotype 2 strain S735. J Bacteriol. 2012;194(22):6343–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang K, Yao H, Chengping Lu JC. Complete genome sequence of Streptococcus suis serotype 16 strain TL13. J Bacteriol. 2011;193(9):2375–6.
Article
Google Scholar
Zheng H, Du P, Qiu X, Kerdsin A, Roy D, Bai X, et al. Genomic comparisons of Streptococcus suis serotype 9 strains recovered from diseased pigs in Spain and Canada. Vet Res. 2018;49(1):1–13. https://doi.org/10.1186/s13567-017-0498-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Szafrański SP, Deng ZL, Tomasch J, Jarek M, Bhuju S, Rohde M, et al. Quorum sensing of Streptococcus mutans is activated by Aggregatibacter actinomycetemcomitans and by the periodontal microbiome. BMC Genomics. 2017;18(1):1–15.
Article
Google Scholar
Cook LC, LaSarre B, Federle MJ. Interspecies communication among commensal and pathogenic streptococci. MBio. 2013;4(4):1–11.
Article
Google Scholar
Brouwer S, Cork AJ, Ong C-LY, Barnett TC, West NP, McIver KS, et al. The endopeptidase PepO regulates the SpeB cysteine protease and is essential for the virulence of invasive M1T1 Streptococcus pyogenes. J Bacteriol. 2018;(January):JB.00654–17 10.1128/JB.00654-17.
Cheung GYC, Otto M. Understanding the significance of Staphylococcus epidermidis bacteremia in babies and children. Curr Opin Infect Dis. 2010;23(3):208–16.
Article
PubMed
PubMed Central
Google Scholar
Herman-Bausier P, Labate C, Towell AM, Derclaye S, Geoghegan JA, Dufrêne YF. Staphylococcus aureus clumping factor a is a force-sensitive molecular switch that activates bacterial adhesion. Proc Natl Acad Sci. 2018;115(21):5564–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
GO CM. db: a set of annotation maps describing the entire gene ontology; 2017.
Google Scholar
Galili T. Dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics. 2015;31(22):3718–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Galili T, O’Callaghan A, Sidi J, Sievert C. Heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics. 2018;34(9):1600–2.
Article
CAS
PubMed
Google Scholar
R Core Team. R: A language and environment for statistical computing [internet]. Vienna: R Core Team; 2017. Available from: https://www.r-project.org/
Google Scholar
Van Der ML. Accelerating t-SNE using tree-based algorithms. J Mach Learn Res. 2014;15:3221–45 Available from: http://jmlr.org/papers/v15/vandermaaten14a.html%0A, http://jmlr.org/papers/v15/vandermaaten14a.html%257B%2525%257D5Cnfiles/1017/JMLR-van%257B_%257Dder%257B_%257DMaaten-2014-Accelerating%257B_%257Dt-SNE%257B_%257Dusing%257B_%257DTree-Based%257B_%257DAlgorith.
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis [internet]. New York: Springer-Verlag; 2016. Available from: https://ggplot2.tidyverse.org
Book
Google Scholar