Arima K, Imanaka H, Kousaka M, Fukuta A, Tamura G. Pyrrolnitrin, a new antibiotic substance, produced by Pseudomonas. Agric Biol Chem. 1964;28:575–6.
Article
CAS
Google Scholar
Brandhorst TT, Klein BS. Uncertainty surrounding the mechanism and safety of the post-harvest fungicide fludioxonil. Food Chem Toxicol. 2019;123:561–5.
Article
CAS
PubMed
Google Scholar
Kilani J, Fillinger S. Phenylpyrroles: 30 years, two molecules and (nearly) no resistance. Front Microbiol. 2016;7(DEC):2014.
PubMed
PubMed Central
Google Scholar
Corran A, Knauf-Beiter G, Zeun R. Fungicides Acting on Signal Transduction. In: Modern Crop Protection Compounds. 2nd ed. Germany: Wiley-VCH; 2012. p. 715–37.
Hohmann S. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett. 2009;583:4025–9.
Article
CAS
PubMed
Google Scholar
Hohmann S. Osmotic stress signaling and Osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002;66:300–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brewster JL, De Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science. 1993;259:1760–3.
Article
CAS
PubMed
Google Scholar
Schumacher MM, Enderlin CS, Selitrennikoff CP. The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol. 1997;34:340–7.
Article
CAS
PubMed
Google Scholar
Alex LA, Borkovich KA, Simon MI. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci U S A. 1996;93:3416–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miller TK, Renault S, Selitrennikoff CP. Molecular dissection of alleles of the osmotic-1 locus of Neurospora crassa. Fungal Genet Biol. 2002;35:147–55.
Article
CAS
PubMed
Google Scholar
Zhang Y, Lamm R, Pillonel C, Lam S, Xu JR. Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue. Appl Environ Microbiol. 2002;68:532–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pillonel C, Meyer T. Effect of Phenylpyrroles on glycerol accumulation and protein kinase activity of Neurospora crassa. Pestic Sci. 1997;49:229–36.
Article
CAS
Google Scholar
Zhou F, Hu HY, Song YL, Gao YQ, Liu QL, Song PW, et al. Biological characteristics and molecular mechanism of Fludioxonil resistance in Botrytis cinerea from Henan Province of China. Plant Dis. 2020;104:1041–7.
Article
CAS
PubMed
Google Scholar
Ren W, Shao W, Han X, Zhou M, Chen C. Molecular and biochemical characterization of laboratory and field mutants of botrytis cinerea resistant to fludioxonil. Plant Dis. 2016;100:1414–23.
Article
PubMed
CAS
Google Scholar
Kuang J, Hou YP, Wang JX, Zhou MG. Sensitivity of Sclerotinia sclerotiorum to fludioxonil: in vitro determination of baseline sensitivity and resistance risk. Crop Prot. 2011;30:876–82.
Article
CAS
Google Scholar
Ziogas BN, Markoglou AN, Spyropoulou V. Effect of phenylpyrrole-resistance mutations on ecological fitness of Botrytis cinerea and their genetical basis in Ustilago maydis. Eur J Plant Pathol. 2005;113:83–100.
Article
CAS
Google Scholar
Yoshimi A, Imanishi J, Gafur A, Tanaka C, Tsuda M. Characterization and genetic analysis of laboratory mutants of Cochliobolus heterostrophus resistant to dicarboximide and phenylpyrrole fungicides. J Gen Plant Pathol. 2003;69:101–8.
Article
CAS
Google Scholar
John E, Lopez-Ruiz F, Rybak K, Mousley CJ, Oliver RP, Tan KC. Dissecting the role of histidine kinase and HOG1 mitogen-activated protein kinase signalling in stress tolerance and pathogenicity of parastagonospora nodorum on wheat. Microbiol (United Kingdom). 2016;162:1023–36.
CAS
Google Scholar
Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol. 2004;53:1743–56.
Article
CAS
PubMed
Google Scholar
Lawrence CL, Botting CH, Antrobus R, Coote PJ. Evidence of a new role for the high-Osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Mol Cell Biol. 2004;24:3307–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mollapour M, Piper PW. Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res. 2006;6:1274–80.
Article
CAS
PubMed
Google Scholar
Aguilera J, Rodriguez-Vargas S, Prieto JA. The HOG MAP kinase pathway is required for the induction of methylglyoxal-responsive genes and determines methylglyoxal resistance in Saccharomyces cerevisiae. Mol Microbiol. 2005;56:228–39.
Article
CAS
PubMed
Google Scholar
Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem. 2006;281:4638–45.
Article
CAS
PubMed
Google Scholar
Thorsen M, Di Y, Tängemo C, Morillas M, Ahmadpour D, Van Der Does C, et al. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell. 2006;17:4400–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keller NP, Turner G, Bennett JW. Fungal secondary metabolism — from biochemistry to genomics. Nat Rev Microbiol. 2005;3:937–47.
Article
CAS
PubMed
Google Scholar
Ochiai N, Tokai T, Nishiuchi T, Takahashi-Ando N, Fujimura M, Kimura M. Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Biophys Res Commun. 2007;363:639–44.
Article
CAS
PubMed
Google Scholar
Derbyshire MC, Denton-Giles M. The control of sclerotinia stem rot on oilseed rape ( Brassica napus ): current practices and future opportunities. Plant Pathol. 2016;65:859–77.
Article
CAS
Google Scholar
Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222.
Article
CAS
PubMed
Google Scholar
Graham-Taylor C, Kamphuis LG, Derbyshire MC. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genomics. 2020;21:7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leroch M, Plesken C, Weber RWS, Kauff F, Scalliet G, Hahn M. Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol. 2013;79:159–67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kretschmer M, Leroch M, Mosbach A, Walker A-S, Fillinger S, Mernke D, et al. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the Grey Mould fungus Botrytis cinerea. PLoS Pathog. 2009;5:e1000696.
Article
PubMed
PubMed Central
CAS
Google Scholar
Briza P, Eckerstorfer M, Breitenbach M. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci U S A. 1994;91:4524–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Friesen H, Hepworth SR, Segall J. An Ssn6-Tup1-dependent negative regulatory element controls sporulation-specific expression of DIT1 and DIT2 in Saccharomyces cerevisiae. Mol Cell Biol. 1997;17:123–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gu Q, Zhang C, Yu F, Yin Y, Shim WB, Ma Z. Protein kinase FgSch9 serves as a mediator of the target of rapamycin and high osmolarity glycerol pathways and regulates multiple stress responses and secondary metabolism in Fusarium graminearum. Environ Microbiol. 2015;17:2661–76.
Article
CAS
PubMed
Google Scholar
Denton-Giles M, Derbyshire MC, Khentry Y, Buchwaldt L, Kamphuis LG. Partial stem resistance in Brassica napus to highly aggressive and genetically diverse Sclerotinia sclerotiorum isolates from Australia. Can J Plant Pathol. 2018;40:551–61.
Article
CAS
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Team RC. R: a language and environment for statistical computing; 2013.
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghi S, Rollins J, Kan JV, et al. The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens. Genome Biol Evol. 2017;9:593–618.
Article
CAS
PubMed
PubMed Central
Google Scholar
Turner I, Garimella KV, Iqbal Z, McVean G. Integrating long-range connectivity information into de Bruijn graphs. Bioinformatics. 2018;34:2556–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly (Austin). 2012;6:80–92.
Article
CAS
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
Article
PubMed
PubMed Central
CAS
Google Scholar
Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read NO, Jaffe D, et al. The genome sequence of the filamentous fungus Neurospora crassa. Nature. 2003;422:859–68.
Article
CAS
PubMed
Google Scholar
Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, et al. SGD: Saccharomyces genome database. Nucleic Acids Res. 1998;26(1):73–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9:357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
CAS
PubMed
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300.
Google Scholar