Kole C. Genomic designing of climate-smart cereal crops: springer international publishing; 2020.
Book
Google Scholar
Jaggard KW, Qi A, Ober ES. Possible changes to arable crop yields by 2050. Philos Trans R Soc Lond Ser B Biol Sci. 2010;365(1554):2835–51.
Article
Google Scholar
Hu H, Xiong L. Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol. 2014;65(1):715–41.
Article
CAS
PubMed
Google Scholar
Aprile A, Mastrangelo AM, De Leonardis AM, Galiba G, Roncaglia E, Ferrari F, De Bellis L, Turchi L, Giuliano G, Cattivelli L. Transcriptional profiling in response to terminal drought stress reveals differential responses along the wheat genome. BMC Genomics. 2009;10:279.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hayano-Kanashiro C, Calderon-Vazquez C, Ibarra-Laclette E, Herrera-Estrella L, Simpson J. Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One. 2009;4(10):e7531.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang X, Wang H, Liu S, Ferjani A, Li J, Yan J, Yang X, Qin F. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet. 2016;48(10):1233–41.
Article
CAS
PubMed
Google Scholar
Adolphe JL, Whiting SJ, Juurlink BH, Thorpe LU, Alcorn J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr. 2010;103(7):929–38.
Article
CAS
PubMed
Google Scholar
Desai A, Park T, Barnes J, Kevala K, Chen H, Kim HY. Reduced acute neuroinflammation and improved functional recovery after traumatic brain injury by alpha-linolenic acid supplementation in mice. J Neuroinflammation. 2016;13(1):253.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen J, Saggar JK, Corey P, Thompson LU. Flaxseed and pure secoisolariciresinol diglucoside, but not flaxseed hull, reduce human breast tumor growth (MCF-7) in athymic mice. J Nutr. 2009;139(11):2061–6.
Article
CAS
PubMed
Google Scholar
Andrew J. Sinclair NMA-B, and duo Li: what is the role of α-Linolenic acid for mammals? Lipids. 2002;37:1113–23.
Article
Google Scholar
Zhang L, Zhou T. Drought over East Asia: a review. J Clim. 2015;28(8):3375–99.
Article
Google Scholar
Dash PK, Cao Y, Jailani AK, Gupta P, Venglat P, Xiang D, Rai R, Sharma R, Thirunavukkarasu N, Abdin MZ, et al. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum). GM Crops Food. 2014;5(2):106–19.
Article
PubMed
PubMed Central
Google Scholar
AM GGR, Gusta LV, Bhatty RS, MacKenzie SL, Taylor DC. The application of chemical mutagenesis and biotechnology to the modification of linseed (Linum usitatissimum L .). Euphytica. 1995;85:317–21.
Article
Google Scholar
RYaDPW VK. Linseed (Linum usitatissimum L.) genetic resources for climate change intervention and its future breeding. J Applied and Natural Science. 2017;9:1112–8.
Article
Google Scholar
Tawfik R, Badr A, Sammour R, Ibrahim U, Matter M, Sakr M. Improvement of flax drought tolerance using gene transfer. Plant Tissue Cult & Biotech. 2016;26:197–207.
Article
Google Scholar
Vembar SS, Seetin M, Lambert C, Nattestad M, Schatz MC, Baybayan P, Scherf A, Smith ML. Complete telomere-to-telomere de novo assembly of the plasmodium falciparum genome through long-read (>11 kb), single molecule, real-time sequencing. DNA Res. 2016;23(4):339–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deschamps S, Campbell MA. Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed. 2009;25(4):553–70.
Article
CAS
Google Scholar
Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, et al. Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol. 2015;33(5):524–30.
Article
PubMed
CAS
Google Scholar
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol. 2015;33(5):531–7.
Article
CAS
PubMed
Google Scholar
Li Y, Dai C, Hu C, Liu Z, Kang C. Global identification of alternative splicing via comparative analysis of SMRT- and Illumina-based RNA-seq in strawberry. Plant J. 2017;90(1):164–76.
Article
CAS
PubMed
Google Scholar
Ahmad N, Malagoli M, Wirtz M, Hell R. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol. 2016;16(1):247.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ksouri N, Jimenez S, Wells CE, Contreras-Moreira B, Gogorcena Y. Transcriptional responses in root and leaf of Prunus persica under drought stress using RNA sequencing. Front Plant Sci. 2016;7:1715.
Article
PubMed
PubMed Central
Google Scholar
Takeno K. Stress-Induced Flowering. In: Ahmad P, Prasad M, editors. Abiotic Stress Responses in Plants. New York, NY: Springer; 2012. p. 331–45.
Chapter
Google Scholar
Wu P, Wu C, Zhou B. Drought stress induces flowering and enhances carbohydrate accumulation in Averrhoa Carambola. Horticultural Plant Journal. 2017;3(2):60–6.
Article
Google Scholar
Per TS, Khan NA, Reddy PS, Masood A, Hasanuzzaman M, Khan MIR, Anjum NA. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol Biochem. 2017;115:126–40.
Article
CAS
PubMed
Google Scholar
Zhang X, Liu X, Zhang D, Tang H, Sun B, Li C, Hao L, Liu C, Li Y, Shi Y, et al. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS One. 2017;12(7):e0179477.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jin J, Zhang H, Kong L, Gao G, Luo J. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42(Database issue):D1182–7.
Article
CAS
PubMed
Google Scholar
Rai AN, Penna S. Molecular evolution of plant P5CS gene involved in proline biosynthesis. Mol Biol Rep. 2013;40(11):6429–35.
Article
CAS
PubMed
Google Scholar
Maghsoudi K, Emam Y, Niazi A, Pessarakli M, Arvin MJ. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J Plant Interact. 2018;13(1):461–71.
Article
CAS
Google Scholar
De Ronde JA, Cress WA, Kruger GH, Strasser RJ, Van Staden J. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol. 2004;161(11):1211–24.
Article
PubMed
CAS
Google Scholar
Benitez LC, Vighi IL, Auler PA, do Amaral MN, Moraes GP, dos Santos Rodrigues G, da Maia LC, de Magalhães Júnior AM, Braga EJB: Correlation of proline content and gene expression involved in the metabolism of this amino acid under abiotic stress. Acta Physiol Plant 2016, 38(11).
Bao F, Du D, An Y, Yang W, Wang J, Cheng T, Zhang Q. Overexpression of Prunus mume Dehydrin genes in tobacco enhances tolerance to cold and drought. Front Plant Sci. 2017;8:151.
PubMed
PubMed Central
Google Scholar
Chiappetta A, Muto A, Bruno L, Woloszynska M, Van Lijsebettens M, Bitonti MB. A dehydrin gene isolated from feral olive enhances drought tolerance in Arabidopsis transgenic plants. Front Plant Sci. 2015;6:392.
Article
PubMed
PubMed Central
Google Scholar
Li C, Wang R. Recent changes of precipitation in Gansu, Northwest China: An index-based analysis. Theor Appl Climatol. 2016;129(1–2):397–412.
Google Scholar
Dash PK, Rai R, Mahato AK, Gaikwad K, Singh NK. Transcriptome landscape at different developmental stages of a drought tolerant cultivar of flax (Linum usitatissimum). Front Chem. 2017;5:82.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soltys-Kalina D, Plich J, Strzelczyk-Zyta D, Sliwka J, Marczewski W. The effect of drought stress on the leaf relative water content and tuber yield of a half-sib family of 'Katahdin'-derived potato cultivars. Breed Sci. 2016;66(2):328–31.
Article
PubMed
PubMed Central
Google Scholar
Larkunthod P, Nounjan N, Siangliw JL, Toojinda T, Sanitchon J, Jongdee B, Theerakulpisut P. Physiological responses under drought stress of improved drought-tolerant Rice lines and their parents. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2018;46(2):679–87.
Article
CAS
Google Scholar
Eziz A, Yan Z, Tian D, Han W, Tang Z, Fang J. Drought effect on plant biomass allocation: a meta-analysis. Ecol Evol. 2017;7(24):11002–10.
Article
PubMed
PubMed Central
Google Scholar
Nguyen KH, Mostofa MG, Li W, Van Ha C, Watanabe Y, Le DT, Thao NP, Tran L-SP. The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis. Environ Exp Bot. 2018;151:12–20.
Article
CAS
Google Scholar
Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES. Genome-wide Association for Plant Height and Flowering Time across 15 tropical maize populations under managed drought stress and well-watered conditions in sub-Saharan Africa. Crop Sci. 2016;56(5):2365–78.
Article
CAS
Google Scholar
Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T, et al. Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed. 2011;30(1):407–18.
Article
CAS
Google Scholar
Olson ME, Soriano D, Rosell JA, Anfodillo T, Donoghue MJ, Edwards EJ, Leon-Gomez C, Dawson T, Camarero Martinez JJ, Castorena M, et al. Plant height and hydraulic vulnerability to drought and cold. Proc Natl Acad Sci U S A. 2018;115(29):7551–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandegeer RK, Tissue DT, Hartley SE, Glauser G, Johnson SN. Physiological acclimation of a grass species occurs during sustained but not repeated drought events. Environ Exp Bot. 2020;171.
Guo R, Hao W, Gong D. Effects of Water Stress on Germination and Growth of Linseed Seedlings (Linum usitatissimum L), Photosynthetic Efficiency and Accumulation of Metabolites. J Agric Sci. 2012;4:10.
Google Scholar
Bakry BA, El-Hariri DM, Sadak MS, El-Bassiouny HMS. Drought Stress Mitigation By Foliar Application Of Salicylic Acid In Two Linseed Varieties Grown Under Newly Reclaimed Sandy Soil. J Appl Sci Res. 2012;8:3503–14.
CAS
Google Scholar
M. Nasir Khan MHS, Firoz Mohammed M. Masroor, A. Khan, and M. Naeem: Salinity induced changes in growth, enzyme activities, photosynthesis, proline accumulation and yield in linseed genotypes. World Journal of Agricultural Science 2007, 3:685–695.
Chi Wei QC. Xi-Qing Zhang, Yu-Qian Zhao and Gui-Xia Jia: three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. Journal of Plant Biology. 2016;59:456–66.
Article
CAS
Google Scholar
Ghannoum O. Caemmerer Sv, Conroy JP: the effect of drought on plant water use efficiency of nine NAD - ME and nine NADP - ME Australian C4 grasses. Funct Plant Biol. 2002;29(11):1337–48.
Article
CAS
PubMed
Google Scholar
Maranne M, Laporte BS, Mitchell C. Tarczynski: engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot. 2002;53:699–705.
Article
Google Scholar
Schroeder JI, Kwak JM, Allen GJ. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature. 2001;410:327–30.
Article
CAS
PubMed
Google Scholar
Lemoine NP, Griffin-Nolan RJ, Lock AD, Knapp AK. Drought timing, not previous drought exposure, determines sensitivity of two shortgrass species to water stress. Oecologia. 2018;188(4):965–75.
Article
PubMed
Google Scholar
Tombesi S, Frioni T, Poni S, Palliotti A. Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ Exp Bot. 2018;150:106–14.
Article
Google Scholar
Menezes-Silva PE, Sanglard L, Avila RT, Morais LE, Martins SCV, Nobres P, Patreze CM, Ferreira MA, Araujo WL, Fernie AR, et al. Photosynthetic and metabolic acclimation to repeated drought events play key roles in drought tolerance in coffee. J Exp Bot. 2017;68(15):4309–22.
Article
CAS
PubMed
Google Scholar
Song GC, Ryu CM. Evidence for volatile memory in plants: boosting Defence priming through the recurrent application of plant volatiles. Mol Cells. 2018;41(8):724–32.
CAS
PubMed
PubMed Central
Google Scholar
Molinier J, Ries G, Zipfel C, Hohn B. Transgeneration memory of stress in plants. Nature. 2006;442(7106):1046–9.
Article
CAS
PubMed
Google Scholar
Peter A, Crisp DG, Eichten SR, Borevitz JO, Pogson BJ. Reconsidering plant memory: Intersections between stress recovery, RNA turnover, and epigenetics. Sci Adv. 2016:2.
Fleta-Soriano E, Munne-Bosch S. Stress memory and the inevitable effects of drought: a physiological perspective. Front Plant Sci. 2016;7:143.
Article
PubMed
PubMed Central
Google Scholar
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. 2013;4:248.
Article
PubMed
PubMed Central
Google Scholar
Golldack D, Li C, Mohan H, Probst N. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. 2014;5:151.
Article
PubMed
PubMed Central
Google Scholar
Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, et al. Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol. 2007;144(2):538–49.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731–48.
Article
CAS
PubMed
Google Scholar
Scharf KD, Berberich T, Ebersberger I, Nover L. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta. 2012;1819(2):104–19.
Article
CAS
PubMed
Google Scholar
Ma X, Zhu X, Li C, Song Y, Zhang W, Xia G, Wang M. Overexpression of wheat NF-YA10 gene regulates the salinity stress response in Arabidopsis thaliana. Plant Physiol Biochem. 2015;86:34–43.
Article
CAS
PubMed
Google Scholar
Liu Z, Qin J, Tian X, Xu S, Wang Y, Li H, Wang X, Peng H, Yao Y, Hu Z, et al. Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat (Triticum aestivum L.). Plant Biotechnol J. 2018;16(3):714–26.
Article
CAS
PubMed
Google Scholar
Ranjan A, Sawant S: Genome-wide transcriptomic comparison of cotton (Gossypium herbaceum) leaf and root under drought stress. 3 Biotech 2015, 5(4):585–596.
Kumimoto RW, Zhang Y, Siefers N, Holt BF 3rd. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. 2010;63(3):379–91.
Article
CAS
PubMed
Google Scholar
Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiol. 2007;143(4):1789–801.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piao W, Sakuraba Y, Paek N-C. Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana. BMB Rep. 2019;52(11):653–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jean Cadet TD. Thierry Douki, Didier Gasparutto, Jean-Pierre Pouget, Jean-Luc Ravanat, and Sylvie Sauvaigo: hydroxyl radicals and DNA base damage. Mutat Res. 1999;424:9–21.
Article
Google Scholar
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33(4):453–67.
Article
CAS
PubMed
Google Scholar
Cruz de Carvalho MH. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signal Behav. 2008;3(3):156–65.
Article
PubMed
PubMed Central
Google Scholar
Shim JS, Oh N, Chung PJ, Kim YS, Choi YD, Kim JK. Overexpression of OsNAC14 improves drought tolerance in Rice. Front Plant Sci. 2018;9:310.
Article
PubMed
PubMed Central
Google Scholar
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids. 2008;35(4):753–9.
Article
CAS
PubMed
Google Scholar
Liang X, Zhang L, Natarajan SK, Becker DF. Proline mechanisms of stress survival. Antioxid Redox Signal. 2013;19(9):998–1011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seta-Koselska A, Skórzyńska-Polit E. Optimization of in vitro culture conditions for obtaining flax ( Linum usitatissimum L. cv. Modran) cell suspension culture. BioTechnologia. 2017;98(3):183–8.
Article
CAS
Google Scholar
Turner NC. Imposing and maintaining soil water deficits in drought studies in pots. Plant Soil. 2018;439(1–2):45–55.
Google Scholar
J Ghashghaie, F Brenckmann, Saugier B: Water relations and growth of rose plants cultured in vitro under various relative humidities. Plant Cell, Tissue and Organ Culture (PCTOC) 1992, 30:51–57.
Yamasaki S, Dillenburg L. Measurements of leaf relative water content in araucaria angustifolia. Rev Bras Fisiol Veg. 1999;11:69–75.
Google Scholar
Hackl T, Hedrich R, Schultz J. Forster F: proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics. 2014;30(21):3004–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21(9):1859–75.
Article
CAS
PubMed
Google Scholar
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues. F1000Res. 2013;2:188.
Article
PubMed
PubMed Central
Google Scholar
Daehwan Kim GP. Cole Trapnell, Harold Pimentel, Ryan Kelley and Steven L Salzberg: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36.
Article
PubMed
PubMed Central
CAS
Google Scholar
BLaCN D. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
Article
CAS
Google Scholar
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
Article
PubMed
CAS
Google Scholar
Robinson MD, McCarthy DJ. Smyth GK: edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.
Article
CAS
PubMed
Google Scholar
Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Article
CAS
PubMed
Google Scholar
Yu G, Wang LG, Han Y. He QY: clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, Zhang P, Banf M, Dai X, Martin GB, Giovannoni JJ, et al. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Mol Plant. 2016;9(12):1667–70.
Article
CAS
PubMed
Google Scholar
Ginestet C. ggplot2: elegant graphics for data analysis. Journal of The Royal Statistical Society Series A-statistics in Society. 2011;174:245–6.
Article
Google Scholar
Kolde R: pheatmap: Pretty Heatmaps. Retrieved from https://cran.r-project.org/package=pheatmap. 2019.
Supek F, Bosnjak M, Skunca N, Smuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 2004;37(6):914–39.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447–52.
Article
CAS
PubMed
Google Scholar