Brocks JJ, Logan GA, Buick R, Summons RE. Archean molecular fossils and the early rise of eukaryotes. Science. 1999;285(5430):1033–6.
Article
CAS
PubMed
Google Scholar
Hoshino Y, Gaucher EA. On the origin of isoprenoid biosynthesis. Mol Biol Evol. 2018;35(9):2185–97.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sacchettini JC, Poulter CD. Creating isoprenoid diversity. Science. 1997;277(5333):1788–9.
Article
CAS
PubMed
Google Scholar
Wright LD. Biosynthesis of isoprenoid compounds. Annu Rev Biochem. 1961;30(1):525–48.
Article
CAS
Google Scholar
Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;295(Pt 2):517.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lombard J, Moreira D. Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol. 2010;28(1):87–99.
Article
PubMed
CAS
Google Scholar
Ruiz-Sola MÁ, Barja MV, Manzano D, et al. A single Arabidopsis gene encodes two differentially targeted geranylgeranyl diphosphate synthase isoforms. Plant Physiol. 2016;172(3):1393–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hemmerlin A, Hoeffler J-F, Meyer O, et al. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem. 2003;278(29):26666–76.
Article
CAS
PubMed
Google Scholar
Bick JA, Lange BM. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch Biochem Biophys. 2003;415(2):146–54.
Article
CAS
PubMed
Google Scholar
Laule O, Fürholz A, Chang H-S, et al. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci. 2003;100(11):6866–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeling PJ. The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc B Biol Sci. 2010;365(1541):729–48.
Article
CAS
Google Scholar
Woodson JD, Chory J. Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet. 2008;9(5):383–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Archibald JM. Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci. 2015;112(33):10147–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walley J, Xiao Y, Wang JZ, et al. Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum. Proc Natl Acad Sci U S A. 2015;112(19):6212–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao YM, Savchenko T, Baidoo EEK, et al. Retrograde signaling by the Plastidial metabolite MEcPP regulates expression of nuclear stress-response genes. Cell. 2012;149(7):1525–35.
Article
CAS
PubMed
Google Scholar
Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci. 2000;97(24):13172–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu YL, Guerra F, Wang K, et al. Structure, function and inhibition of the two- and three-domain 4Fe-4S IspG proteins (vol 109, pg 8558, 2012). Proc Natl Acad Sci U S A. 2012;109(26):10605.
CAS
Google Scholar
Kuzuyama T, Takagi M, Takahashi S, Seto H. Cloning and characterization of 1-deoxy-D-xylulose 5-phosphate synthase from Streptomyces sp. strain CL190, which uses both the mevalonate and nonmevalonate pathways for isopentenyl diphosphate biosynthesis. J Bacteriol. 2000;182(4):891–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carretero-Paulet L, Cairo A, Talavera D, et al. Functional and evolutionary analysis of DXL1, a non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana. Gene. 2013;524(1):40–53.
Article
CAS
PubMed
Google Scholar
Zhang M, Li K, Zhang C, Gai J, Yu D. Identification and characterization of class 1 DXS gene encoding 1-deoxy-D-xylulose-5-phosphate synthase, the first committed enzyme of the MEP pathway from soybean. Mol Biol Rep. 2009;36(5):879–87.
Article
CAS
PubMed
Google Scholar
Walter MH, Hans J, Strack D. Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J. 2002;31(3):243–54.
Article
CAS
PubMed
Google Scholar
Floß DS, Hause B, Lange PR, Küster H, Strack D, Walter MH. Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. Plant J. 2008;56(1):86–100.
Article
PubMed
CAS
Google Scholar
Cordoba E, Porta H, Arroyo A, et al. Functional characterization of the three genes encoding 1-deoxy-D-xylulose 5-phosphate synthase in maize. J Exp Bot. 2011;62(6):2023–38.
Article
CAS
PubMed
Google Scholar
Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, Fitzpatrick TB. Vitamin B6 biosynthesis in higher plants. Proc Natl Acad Sci. 2005;102(38):13687–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ren R, Wang H, Guo C, et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms. Mol Plant. 2018;11(3):414–28.
Article
CAS
PubMed
Google Scholar
De Smet R, Adams KL, Vandepoele K, Van Montagu MC, Maere S, Van de Peer Y. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci. 2013;110(8):2898–903.
Article
PubMed
PubMed Central
Google Scholar
Yang Z, Nielsen R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol. 1998;46(4):409–18.
Article
CAS
PubMed
Google Scholar
Jin J, Xie XY, Chen C, et al. Eukaryotic Protein Domains as Functional Units of Cellular Evolution. Sci Signal. 2009;2(98):76.
Zhang J, Yang J-R. Determinants of the rate of protein sequence evolution. Nat Rev Genet. 2015;16(7):409.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jordan IK, Rogozin IB, Wolf YI, Koonin EV. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 2002;12(6):962–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansen R, Bussemaker HJ, Gerstein M. Revisiting the codon adaptation index from a whole-genome perspective: analyzing the relationship between gene expression and codon occurrence in yeast using a variety of models. Nucleic Acids Res. 2003;31(8):2242–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rubin BE, Wetmore KM, Price MN, et al. The essential gene set of a photosynthetic organism. Proc Natl Acad Sci. 2015;112(48):E6634–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goodall EC, Robinson A, Johnston IG, et al. The essential genome of Escherichia coli K-12. MBio. 2018;9(1):e02096–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rensing SA. Gene duplication as a driver of plant morphogenetic evolution. Curr Opin Plant Biol. 2014;17:43–8.
Article
CAS
PubMed
Google Scholar
Zhang J. Evolution by gene duplication: an update. Trends Ecol Evol. 2003;18(6):292–8.
Article
Google Scholar
Jin H, Song Z, Nikolau BJ. Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development. Plant J. 2012;70(6):1015–32.
Article
CAS
PubMed
Google Scholar
Suzuki M, Kamide Y, Nagata N, et al. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J. 2004;37(5):750–61.
Article
CAS
PubMed
Google Scholar
Pulido P, Perello C, Rodriguez-Concepcion M. New insights into plant isoprenoid metabolism. Mol Plant. 2012;5(5):964–7.
Article
CAS
PubMed
Google Scholar
Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJ. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature. 2018;557(7703):101–5.
Article
CAS
PubMed
Google Scholar
Qiu H, Price DC, Yang EC, Yoon HS, Bhattacharya D. Evidence of ancient genome reduction in red algae (Rhodophyta). J Phycol. 2015;51(4):624–36.
Article
CAS
PubMed
Google Scholar
McFadden GI. Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harb Perspect Biol. 2014;6(4):a016105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang K, Zhu X, Wood R, Shi Y, Gao Z, Poulton S. Oxygenation of the Mesoproterozoic Ocean and the evolution of complex eukaryotes. Nat Geosci. 2018;11:345–50.
Article
CAS
Google Scholar
Harada M, Tajika E, Sekine Y. Transition to an oxygen-rich atmosphere with an extensive overshoot triggered by the Paleoproterozoic snowball earth. Earth Planet Sc Lett. 2015;419:178–86.
Article
CAS
Google Scholar
Fiorella RP, Sheldon ND. Equable end Mesoproterozoic climate in the absence of high CO2. Geology. 2017;45(3):231–4.
Article
CAS
Google Scholar
Ostrovsky D, Diomina G, Lysak E, Matveeva E, Ogrel O, Trutko S. Effect of oxidative stress on the biosynthesis of 2-C-methyl-D-erythritol-2, 4-cyclopyrophosphate and isoprenoids by several bacterial strains. Arch Microbiol. 1998;171(1):69–72.
Article
CAS
PubMed
Google Scholar
Rivasseau C, Seemann M, BOISSON A, et al. Accumulation of 2-C-methyl-D-erythritol 2, 4-cyclopyrophosphate in illuminated plant leaves at supraoptimal temperatures reveals a bottleneck of the prokaryotic methylerythritol 4-phosphate pathway of isoprenoid biosynthesis. Plant Cell Environ. 2009;32(1):82–92.
Article
CAS
PubMed
Google Scholar
Ostrovsky DN, Dyomina GR, Deryabina YI, et al. Properties of 2-C-methyl-D-erythritol 2,4-cyclopyrophosphate, an intermediate in nonmevalonate isoprenoid biosynthesis. Appl Biochem Microbiol. 2003;39(5):497–502.
Article
CAS
Google Scholar
Ku C, Nelson-Sathi S, Roettger M, Garg S, Hazkani-Covo E, Martin WF. Endosymbiotic gene transfer from prokaryotic pangenomes: inherited chimerism in eukaryotes. Proc Natl Acad Sci. 2015;112(33):10139–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol. 2017;27(3):386–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Gogarten JP. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 2007;8(6):R99.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ball SG, Subtil A, Bhattacharya D, et al. Metabolic effectors secreted by bacterial pathogens: essential facilitators of plastid endosymbiosis? Plant Cell. 2013;25(1):7–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ball SG, Bhattacharya D, Weber AP. Infection and the first eukaryotes—response. Science. 2016;352(6289):1065–6.
Article
CAS
PubMed
Google Scholar
Cenci U, Ducatez M, Kadouche D, Colleoni C, Ball SG. Was the chlamydial Adaptative strategy to tryptophan starvation an early determinant of plastid endosymbiosis? Front Cell Infect Mi. 2016;6:67.
Cenci U, Bhattacharya D, Weber AP, Colleoni C, Subtil A, Ball SG. Biotic host–pathogen interactions as major drivers of plastid endosymbiosis. Trends Plant Sci. 2017;22(4):316–28.
Article
CAS
PubMed
Google Scholar
Domman D, Horn M, Embley TM, Williams TA. Plastid establishment did not require a chlamydial partner. Nat Commun. 2015;6:6421.
Article
PubMed
CAS
Google Scholar
Gould SB. Infection and the first eukaryotes. Science. 2016;352(6289):1065.
Article
CAS
PubMed
Google Scholar
Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet. 2015;16(8):472.
Article
CAS
PubMed
Google Scholar
Ku C, Nelson-Sathi S, Roettger M, et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature. 2015;524(7566):427.
Article
CAS
PubMed
Google Scholar
Nishiyama T, Sakayama H, de Vries J, et al. The Chara genome: secondary complexity and implications for plant terrestrialization. Cell. 2018;174(2):448–464. e424.
Article
CAS
PubMed
Google Scholar
Hori K, Maruyama F, Fujisawa T, et al. Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation. Nat Commun. 2014;5:3978.
Article
CAS
PubMed
Google Scholar
Eddy SR. Hidden markov models. Curr Opin Struct Biol. 1996;6(3):361–5.
Article
CAS
PubMed
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27(8):1164–5.
Article
CAS
PubMed
Google Scholar
Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12(4):335–7.
Article
Google Scholar
Ronquist F, Teslenko M, Van Der Mark P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61(3):539–42.
Article
PubMed
PubMed Central
Google Scholar
Lee T-H, Tang H, Wang X, Paterson AH. PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res. 2012;41(D1):D1152–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Team RC. R: a language and environment for statistical computing; 2013.
Google Scholar
Bjornson M, Balcke GU, Xiao Y, et al. Integrated omics analyses of retrograde signaling mutant delineate interrelated stress-response strata. Plant J. 2017;91(1):70–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kebede AZ, Johnston A, Schneiderman D, Bosnich W, Harris LJ. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genomics. 2018;19(1):131.
Article
PubMed
PubMed Central
CAS
Google Scholar
Khraiwesh B, Qudeimat E, Thimma M, et al. Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response. Sci Rep. 2015;5:17434.
Article
CAS
PubMed
PubMed Central
Google Scholar
You C, Cui J, Wang H, et al. Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biol. 2017;18(1):158.
Article
PubMed
PubMed Central
CAS
Google Scholar
Puigbò P, Bravo IG, Garcia-Vallve S. CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct. 2008;3(1):38.
Article
PubMed
PubMed Central
CAS
Google Scholar