Ikawa M, Inoue N, Benham AM, Okabe M. Fertilization: a sperm’s journey to and interaction with the oocyte. J Clin Invest. 2013;120:984–94.
Article
Google Scholar
Bianchi E, Wright GJ. Sperm meets egg: The genetics of mammalian fertilization. Ann Rev Genet. 2016;50:93–111. https://doi.org/10.1146/annurev-genet-121415-121834.
Article
CAS
PubMed
Google Scholar
Archana SS, Selvaraju S, Binsila BK, Arangasamy A, Krawetz SA. Immune regulatory molecules as modifiers of semen and fertility: A review. Mol Reprod Dev. 2019;86(11):1485–504. https://doi.org/10.1002/mrd.23263.
Article
CAS
PubMed
Google Scholar
Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl. 2019;21:1–9.
Article
Google Scholar
Katila T. Post-mating inflammatory responses of the uterus. Reprod Dom Animals. 2012;47:31–41. https://doi.org/10.1111/j.1439-0531.2012.02120.x.
Article
Google Scholar
Hall JC, Killian GJ. Changes in rat sperm membrane glycosidase activities and carbohydrate and protein contents associated with epididymal transit. Biol Reprod. 1987;36(3):709–18. https://doi.org/10.1095/biolreprod36.3.709.
Article
CAS
PubMed
Google Scholar
Sullivan R, Mieusset R. The human epididymis: its function in sperm maturation. Hum Reprod Update. 2016;22(5):574–87. https://doi.org/10.1093/humupd/dmw015.
Article
CAS
PubMed
Google Scholar
Jones R, Brown CR. Identification and characterization of the 2D6 and Mr 23000 antigens on the plasma membrane of rat spermatozoa. Biochem J. 1987;241(2):353–60. https://doi.org/10.1042/bj2410353.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guyonnet B, Dacheux F, Dacheux JL, Gatti JL. The epididymal transcriptome and proteome provide some insights into new epididymal regulations. J Androl. 2011;32(6):651–64. https://doi.org/10.2164/jandrol.111.013086.
Article
CAS
PubMed
Google Scholar
Belleannée C, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, Dacheux F. Identification of luminal and secreted proteins in bull epididymis. J Proteome. 2011a;74(1):59–78. https://doi.org/10.1016/j.jprot.2010.07.013.
Article
CAS
Google Scholar
Belleannée C, Belghazi M, Labas V, Teixeira-Gomes AP, Gatti JL, Dacheux JL, et al. Purification and identification of sperm surface proteins and changes during epididymal maturation. Proteomics. 2011b;11(10):1952–64. https://doi.org/10.1002/pmic.201000662.
Article
CAS
PubMed
Google Scholar
Ribeiro CM, Silva Erick JR, Hinton BT, Avellar MCW. β-Defensins and the epididymis: contrasting influences of prenatal, postnatal, and adult scenarios. Asian J Androl. 2016;18(2):323–8. https://doi.org/10.4103/1008-682X.168791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Skerget S, Rosenow MA, Petritis K, Karr TL. Sperm proteome maturation in the mouse epididymis. PLoS One. 2015;10(11):e0140650. https://doi.org/10.1371/journal.pone.0140650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA. Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl. 2007;9(4):554–64. https://doi.org/10.1111/j.1745-7262.2007.00280.x.
Article
CAS
PubMed
Google Scholar
Diekman A. Glyco-conjugates in sperm function and gamete interactions: how much sugar does it take to sweet-talk the egg? Cell Mol Life Sci. 2003;60(2):298–308. https://doi.org/10.1007/s000180300025.
Article
CAS
PubMed
Google Scholar
Robaire B, Hinton BT. The epididymis. In: Plant TM, Zeleznik AJ, editors. Knobil and Neill’s physiology of reproduction. 4th ed. San Diego: Academic Press; 2015. p. 691–771. https://doi.org/10.1016/B978-0-12-397175-3.00017-X.
Chapter
Google Scholar
Tulsiani DR. Glycan-modifying enzymes in luminal fluid of the mammalian epididymis: an overview of their potential role in sperm maturation. Mol Cell Endocrinol. 2006;250(1-2):58–65. https://doi.org/10.1016/j.mce.2005.12.025.
Article
CAS
PubMed
Google Scholar
Cooper TG, Yeung CH. Sperm maturation in the human epididymis. In: De Jonge C, Barratt C, editors. The sperm cell production, maturation, fertilization, regeneration. Cambridge: Cambridge University Press; 2006. p. 72–107. https://doi.org/10.1017/CBO9780511545115.005.
Chapter
Google Scholar
Tecle E, Gagneux P. Sugar-coated sperm: unraveling the functions of the mammalian sperm glycocalyx. Mol Reprod Dev. 2015;82(9):635–50. https://doi.org/10.1002/mrd.22500.
Article
CAS
PubMed
PubMed Central
Google Scholar
Métayer S, Dacheux F, Dacheux JL, Gatti JL. Comparison, characterization and identification of protease and protease inhibitors in epididymal fluid of domestic mammals. Matrix metalloproteinases are major fluid gelatinases. Biol Reprod. 2002;66(5):1219–29. https://doi.org/10.1095/biolreprod66.5.1219.
Article
PubMed
Google Scholar
Wu YC, Xin AJ, Lu H, Diao H, Cheng L, et al. Effects of cryopreservation on human sperm glycocalyx. Rep Dev Med. 2017;1:233–8.
Article
Google Scholar
Zhou W, Stanger SJ, Anderson AL, Bernstein IR, De Iuliis GN, et al. Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol. 2019;17(1):35. https://doi.org/10.1186/s12915-019-0653-5.
Article
PubMed
PubMed Central
Google Scholar
Frenette G, Girouard J, D'Amours O, Allard N, Tessier L, Sullivan R. Characterization of two distinct populations of epididymosomes collected in the intraluminal compartment of the bovine cauda epididymis. Biol Reprod. 2010;83(3):473–80. https://doi.org/10.1095/biolreprod.109.082438.
Article
CAS
PubMed
Google Scholar
Martin-DeLeon PA. Epididymosomes: transfer of fertility-modulating proteins to the sperm surface. Asian J Androl. 2015;17(5):720–5. https://doi.org/10.4103/1008-682X.155538.
Article
CAS
PubMed
PubMed Central
Google Scholar
Légaré C, Akintayo A, Blondin P, Calvo E, Sullivan R. Impact of male fertility status on the transcriptome of the bovine epididymis. Mol Hum Reprod. 2017;23(6):355–69. https://doi.org/10.1093/molehr/gax019.
Article
CAS
PubMed
Google Scholar
Kirchoff C. Molecular characterization of epididymal proteins. Rev Reprod. 1998;3(2):86–95. https://doi.org/10.1530/ror.0.0030086.
Article
Google Scholar
Holland MK, Nixon B. The specificity of epididymal secretory proteins. J Reprod Fertil. 1998;53:197–210.
CAS
Google Scholar
Batra V, Dagar K, Nayak S, Kumaresan A, Kumar R, Datta TK. A higher abundance of O-linked glycans confers a selective advantage to high fertile buffalo spermatozoa for immune-evasion from neutrophils. Front Immunol. 2020;11:1928. https://doi.org/10.3389/fimmu.2020.01928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tollner TL, Bevins CL, Cherr GN. Multi-functional glycoprotein DEFB126- a curious story of defensin-clad spermatozoa. Nat Rev Urol. 2012;9(7):365–75. https://doi.org/10.1038/nrurol.2012.109.
Article
CAS
PubMed
Google Scholar
Lyons A, Narciandi F, Donnellan E, Romero-Aguirregomezcorta J, O’Farrelly C, Lonergan P, et al. Recombinant β-defensin 126 promotes bull sperm binding to bovine oviductal epithelia. Reprod Fert Dev. 2018;30(11):1472–81. https://doi.org/10.1071/RD17415.
Article
CAS
Google Scholar
Pang PC, Chiu PCN, Lee CL, Chang LY, Panico M, Morris HR, et al. Human sperm binding is mediated by the sialyl-Lewis(x) oligosaccharide on the zona pellucida. Science. 2011;333(6050):1761–4. https://doi.org/10.1126/science.1207438.
Article
CAS
PubMed
Google Scholar
Tollner TL, Venners SA, Hollox EJ, Yudin AI, Liu X, et al. A common mutation in the defensin DEFB126 causes impaired sperm function and subfertility. Sci Transl Med. 2011;3:92ra65.
Article
CAS
Google Scholar
Scherf BD. World watch list for domestic animal diversity. 3rd ed. Rome: Food and Agriculture Organization of the United Nations; 2000.
Google Scholar
Khatun M, Kaur S. Kanchan, Mukhopadhyay CS. Subfertility problems leading to disposal of breeding bulls. Asian-Australas. J Anim Sci. 2013;26:303–8.
Google Scholar
Mukhopadhyay CS, Gupta AK, Yadav BR, Gupta A, Mohanty TK, Raina VS. Study on the effect of various uncompromisable traits on fertilizing potential in cattle and buffalo bulls. Livest Sci. 2011;136(2-3):114–21. https://doi.org/10.1016/j.livsci.2010.08.010.
Article
Google Scholar
Annual report 2017-18 and project coordinator’s observations: Network project on buffalo improvement. 2018. https://cirb.res.in/annual-reports.
Berry DP, Evans RD, Mc PS. Evaluation of bull fertility in dairy and beef cattle using cow field data. Theriogenology. 2011;75(1):172–81. https://doi.org/10.1016/j.theriogenology.2010.08.002.
Article
CAS
PubMed
Google Scholar
Parkinson TJ. Evaluation of fertility and infertility in natural service bulls. Vet J. 2004;168(3):215–29. https://doi.org/10.1016/j.tvjl.2003.10.017.
Article
CAS
PubMed
Google Scholar
Xin A, Cheng LM, Diao H, Wu Y, Zhou S, Shi C, et al. Lectin binding of human sperm associates with DEFB126 mutation and serves as a potential biomarker for subfertility. Sci Rep. 2016;6(1):20249. https://doi.org/10.1038/srep20249.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD, editors. The physiology of reproduction. Vol.1, Raven Press: New York; 1994. p. 189–317.
Batra V, Maheshwarappa A, Dagar K, Kumar S, Soni A, Kumaresan A, et al. Unusual interplay of contrasting selective pressures on β-defensin genes implicated in male fertility of the Buffalo (Bubalus bubalis). BMC Evol Biol. 2019;19(1):214. https://doi.org/10.1186/s12862-019-1535-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suarez SS. Mammalian sperm interactions with the female reproductive tract. Cell Tissue Res. 2016;363(1):185–94. https://doi.org/10.1007/s00441-015-2244-2.
Article
Google Scholar
Zhou CX, Zhang YL, Xiao L, Zheng M, Leung KM, Chan MY, et al. An epididymis-specific beta-defensin is important for the initiation of sperm maturation. Nat Cell Biol. 2004;6(5):458–64. https://doi.org/10.1038/ncb1127.
Article
CAS
PubMed
Google Scholar
Zhao Y, Diao H, Ni Z, Hu S, Yu H, Zhang Y. The epididymis specific antimicrobial peptide β-defensin 15 is required for sperm motility and male fertility in the rat (Rattus norvegicus). Cell Mol Life Sci. 2011;68(4):697–708. https://doi.org/10.1007/s00018-010-0478-4.
Article
CAS
PubMed
Google Scholar
Yudin AI, Tollner TL, Li MW, Treece CA, Overstreet JW, Cherr GN. ESP13.2, a member of the beta-defensin family, is a macaque sperm surface-coating protein involved in the capacitation process. Biol Reprod. 2003;69(4):1118–28. https://doi.org/10.1095/biolreprod.103.016105.
Article
CAS
PubMed
Google Scholar
Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P, Suarez SS. Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biol Reprod. 2006;75(4):501–7. https://doi.org/10.1095/biolreprod.106.053306.
Article
CAS
PubMed
Google Scholar
Yudin AI, Generao SE, Tollner TL, Treece CA, Overstreet JW, Cherr GN. β-Defensin 126 on the cell surface protects sperm from immunorecognition and binding of anti-sperm antibodies. Biol Reprod. 2005b;73(6):1243–52. https://doi.org/10.1095/biolreprod.105.042432.
Article
CAS
PubMed
Google Scholar
Fernandez-Fuertes B, Narciandi F, O'Farrelly C, Kelly AK, Fair S, Meade KG, et al. Cauda epididymis-specific beta-defensin 126 promotes sperm motility but not fertilizing ability in cattle. Biol Reprod. 2016;95(6):122. https://doi.org/10.1095/biolreprod.116.138792.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cornwall GA. Role of posttranslational protein modifications in epididymal sperm maturation and extracellular quality control. In: Sutovsky P, editor. Post-translational protein modifications in the reproductive system. New York: Springer; 2014. p. 159–80.
Google Scholar
Holt WV, Fazeli A. Do sperm possess a molecular passport? Mechanistic insights into sperm selection in the female reproductive tract. Mol Hum Rep. 2015;21(6):491–501. https://doi.org/10.1093/molehr/gav012.
Article
Google Scholar
Holt WV. Surface-bound sialic acid on ram and bull spermatozoa: deposition during epididymal transit and stability during washing. Biol Reprod. 1980;23(4):847–57. https://doi.org/10.1095/biolreprod23.4.847.
Article
CAS
PubMed
Google Scholar
Defaus S, Avilés M, Andreu D, Gutiérrez-Gallego R. Identification of bovine sperm surface proteins involved in carbohydrate-mediated fertilization interactions. Mol Cell Proteomics. 2016;5:2236–51.
Article
Google Scholar
Aram R, Chan PTK, Cyr DG. Beta-defensin126 is correlated with sperm motility in fertile and infertile men. Biol Reprod. 2020;102(1):92–101. https://doi.org/10.1093/biolre/ioz171.
Article
PubMed
Google Scholar
Zhang J, Ahn J, Suh Y, Hwang S, Davis ME, Lee K. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as novel tissue-specific secretory factors in mouse. PloS One. 2015; doi; https://doi.org/10.1371/journal.pone.0124962.
Cooper TG. The epididymis, sperm maturation and fertilization. Springer Science & Business Media; 2012.
Schröter S, Osterhoff C, McArdle W, Ivell R. The glycocalyx of the sperm surface. Hum Reprod. 1999;5:302–13.
Google Scholar
Légaré C, Sullivan R. Differential gene expression profiles of human efferent ducts and proximal epididymis. Andrology. 2019;8:625–36.
Article
Google Scholar
Girouard J, Frenette G, Sullivan R. Comparative proteome and lipid profiles of bovine epididymosomes collected in the intraluminal compartment of the caput and cauda epididymidis. Int J Androl. 2011;34(5pt2):e475–86. https://doi.org/10.1111/j.1365-2605.2011.01203.x.
Article
CAS
PubMed
Google Scholar
Semple F, MacPherson H, Webb S, Kilanowski F, Lettice L, McGlasson SL, et al. Human β-D-3 exacerbates MDA5 but suppresses TLR3 responses to the viral molecular pattern mimic polyinosinic: polycytidylic acid. PLoS Genet. 2015;11(12):e1005673. https://doi.org/10.1371/journal.pgen.1005673.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sørensen OE, Borregaard N, Cole AM. Antimicrobial peptides in innate immune responses. Contrib Microbiol. 2008;15:61–77. https://doi.org/10.1159/000136315.
Article
PubMed
Google Scholar
Dean MD, Good JM, Nachman MW. Adaptive evolution of proteins secreted during sperm maturation: an analysis of the mouse epididymal transcriptome. Mol Biol Evol. 2008;25(2):383–92. https://doi.org/10.1093/molbev/msm265.
Article
CAS
PubMed
Google Scholar
Ribeiro CM, Romano RM, Avellar MCW. Beta-defensins in the epididymis: clues to multifunctional roles. AnimReprod. 2012;9:9.
Google Scholar
Dube E, Hermo L, Chan PT, Cyr DG. Alterations in gene expression in the caput epididymides of nonobstructive azoospermic men. Biol Reprod. 2008;78(2):342–51. https://doi.org/10.1095/biolreprod.107.062760.
Article
CAS
PubMed
Google Scholar
Meade KG, O'Farrelly C. β-Defensins: Farming the microbiome for homeostasis and health. Front Immunol. 2018;9:3072.
Article
CAS
Google Scholar
Meade KG, Cormican P, Narciandi F, Lloyd A, O’Farrelly C. Bovine defensin gene family: opportunities to improve animal health. Physiol Genomics. 2014;46(1):17–28. https://doi.org/10.1152/physiolgenomics.00085.2013.
Article
CAS
PubMed
Google Scholar
Dorin JR, McHugh BJ, Cox SL, Davidson DJ. Mammalian antimicrobial peptides; defensins and cathelicidins. In: Tang YW, Sussman M, Liu D, Poxton I, Schwartzman J, Molecular Medical Microbiology. Academic Press. 2015:539–65.
Narciandi F, Fernandez-Fuertes B, Khairulzaman I, Jahns H, King D, Finlay EK, et al. Sperm-coating beta-defensin 126 is a dissociation-resistant dimer produced by epididymal epithelium in the bovine reproductive tract. Biol Reprod. 2016;95(6):121. https://doi.org/10.1095/biolreprod.116.138719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whiston R, Finlay EK, McCabe MS, Cormican P, Flynn P, Cromie A, et al. A dual targeted beta-defensin and exome sequencing approach to identify validate and functionally characterise genes associated with bull fertility. Sci Rep. 2017;7(1):12287. https://doi.org/10.1038/s41598-017-12498-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019;88:163–72. https://doi.org/10.1016/j.semcdb.2018.02.023.
Article
CAS
PubMed
Google Scholar
Chapman JR, Hellgren O, Helin AS, Kraus RH, Cromie RL, Waldenström J. The evolution of innate immune genes: purifying and balancing selection on β-defensins in waterfowl. Mol Biol Evol. 2016;33(12):3075–308. https://doi.org/10.1093/molbev/msw167.
Article
CAS
PubMed
Google Scholar
Meade KG, Higgs R, Lloyd AT, Giles S, O'Farrelly C. Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Dev Comp Immunol. 2009;33(4):516–24. https://doi.org/10.1016/j.dci.2008.10.003.
Article
CAS
PubMed
Google Scholar
Hall SH, Yenugu S, Radhakrishnan Y, Avellar MC, Petrusz P, French FS. Characterization and functions of beta-defensins in the epididymis. Asian J Androl. 2007;9(4):453–62. https://doi.org/10.1111/j.1745-7262.2007.00298.x.
Article
CAS
PubMed
Google Scholar
Diao R, Fok KL, Chen H, Yu MK, Duan Y, Chung CM, et al. Deficient human β-defensin 1 underlies male infertility associated with poor sperm motility and genital tract infection. Sci Transl Med. 2014;6:249ra108.
Article
Google Scholar
Fernandez-Fuertes B, Blanco-Fernandez A, Reid CJ, Meade KG, Fair S, Lonergan P. Removal of sialic acid from bull sperm decreases motility and mucus penetration ability but increases zona pellucid binding and polyspermic penetration in vitro. Reproduction. 2018;155(6):481–92. https://doi.org/10.1530/REP-17-0429.
Article
CAS
PubMed
Google Scholar
Duan S, Shi C, Chen G, Zheng JF, Wu B, Diao H, et al. Another functional frame-shift polymorphism of DEFB126 (rs11467497) associated with male infertility. J Cell Mol Med. 2015;19(5):1077–84. https://doi.org/10.1111/jcmm.12502.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yudin AI, Treece CA, Tollner TL, Overstreet JW, Cherr GN. The carbohydrate structure of DEFB126, the major component of the cynomolgus macaque sperm plasma membrane glycocalyx. J Memb Biol. 2005a;207(3):119–1290. https://doi.org/10.1007/s00232-005-0806-z.
Article
CAS
Google Scholar
Yudin AI, Tollner TL, Treece CA, Kays R, Cherr GN, Overstreet JW, et al. Beta-defensin 22 is a major component of the mouse sperm glycocalyx. Reproduction. 2008;136(6):753–65. https://doi.org/10.1530/REP-08-0164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tollner TL, Yudin AI, Treece CA, Overstreet JW, Cherr GN. Macaque sperm release ESP13.2 and PSP94 during capacitation: the absence of ESP13.2 is linked to sperm-zona recognition and binding. Mol Reprod Dev. 2004;69:325–37.
Article
CAS
Google Scholar
Bohring C, Krause E, Habermann B, Krause W. Isolation and identification of sperm membrane antigens recognized by anti-sperm antibodies, and their possible role in immunological infertility disease. Mol Hum Reprod. 2001;7(2):113–8. https://doi.org/10.1093/molehr/7.2.113.
Article
CAS
PubMed
Google Scholar
Gourinath, S. Mass spectrometric analysis data of Pyruvate Kinase from E. histolytica. Mendeley Data, V1. 2019. https://doi.org/10.17632/d9cvddpp53.1
Dorin JR, Barratt CL. Importance of β-defensins in sperm function. Mol Hum Reprod. 2014;20(9):821–6. https://doi.org/10.1093/molehr/gau050.
Article
CAS
PubMed
Google Scholar
Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl. 2015;9(7-8):745–54. https://doi.org/10.1002/prca.201400164.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dolores B, Cohen DJ, Maldera JA, Dematteis A, Cuasnicu PS. A novel function for CRISP1 in rodent fertilization: involvement in sperm-Zona Pellucida interaction, biol. Reprod. 2007;77:848–54.
Article
Google Scholar
Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF. Insect seminal fluid proteins: identification and function. Annu Rev Entomol. 2011;56(1):21–40. https://doi.org/10.1146/annurev-ento-120709-144823.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okuda S, Tsutsui H, Shiina K, Sprunck S, Takeuchi H, Ryoko Y, et al. Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature. 2009;458(7236):357–61. https://doi.org/10.1038/nature07882.
Article
CAS
PubMed
Google Scholar
Amien S, Kliwer I, Márton ML, Debener T, Geiger D, Dirk B, et al. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1. PLoS Biol. 2010;8(6):e1000388. https://doi.org/10.1371/journal.pbio.1000388.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeuchi H, Higashiyama T. A species-specific cluster of defensin-like genes encodes diffusible pollen tube attractants in Arabidopsis. PLoS Biol. 2012;10(12):e1001449. https://doi.org/10.1371/journal.pbio.1001449.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source MS/MS sequence database search tool. Proteomics. 2013;13(1):22–4. https://doi.org/10.1002/pmic.201200439.
Article
CAS
PubMed
Google Scholar
Shteynberg D, Deutsch EW, Lam H, Eng JK, Sun Z, Tasman N, et al. iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics. 2011;10(12):M111.007690. https://doi.org/10.1074/mcp.M111.007690.
Article
CAS
PubMed
PubMed Central
Google Scholar
agriGO. https://bioinfo.cau.edu.cn/agriGO/. Accesses Nov20, 2019.
Yekutieli D, Benjamini Y. Resampling based false discovery rate controlling procedure for dependent test statistics. J Statist Plng Inf. 1999;82(1–2):171–19. https://doi.org/10.1016/S0378-3758(99)00041-5.
Article
Google Scholar
Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One. 2011;6(7):e21800. https://doi.org/10.1371/journal.pone.0021800.
Article
CAS
PubMed
PubMed Central
Google Scholar
Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, Brownstein BH. Inflammation and host response to injury, large-scale collaborative research program. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics. 2004;19(3):247–54. https://doi.org/10.1152/physiolgenomics.00020.2004.
Article
CAS
PubMed
Google Scholar
Rather HA, Kumaresan A, Nag P, Kumar V, Nayak S, Batra V, et al. Spermatozoa produced during winter are superior in terms of phenotypic characteristics and oviduct explants binding ability in the water buffalo (Bubalus bubalis). Rep Dom Anim. 2020;55(11):1629–37. https://doi.org/10.1111/rda.13824.
Article
CAS
Google Scholar
Fleri W, Paul S, Dhanda SK, Mahajan S, Xu X, Peters B, et al. The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Front Immunol. 2017;8:278.
Article
Google Scholar
Brown CR, von Glos KI, Jones R. Changes in plasma membrane glycoproteins of rat spermatozoa during maturation in the epididymis. J Cell Biol. 1983;96(1):256–64. https://doi.org/10.1083/jcb.96.1.256.
Article
CAS
PubMed
Google Scholar
Jain A, Jain T, Kumar P, Kumar M, De S, Gohain M, et al. Follicle-stimulating hormone–induced rescue of cumulus cell apoptosis and enhanced development ability of buffalo oocytes. Dom Anim Endocrinol. 2016;55:74–82. https://doi.org/10.1016/j.domaniend.2015.10.007.
Article
CAS
Google Scholar
Hataska H. Immunologic factors in infertility. Clin Obstet Gynecol. 2000;43:830–843.
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, et al. The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–22.